Who Regional Rail is For

A few rail proposals have happened in the last few months that begin with the concept of improving transit access in the suburbs, and end in a bad direction. These center on airport-oriented rail extension, which in the case of New York means building transit to Newark, JFK, and LaGuardia, as a high priority; consider Chris Christie’s proposal for a PATH link to Newark Airport, and proposals on PDF-pp. 17-18 of Next New York for airport service. Instead of this, let me expound a bit on what the most promising travel markets for regional rail are:

1. The through-running aspect is useful for people whose commute requires them to cross the CBD or go around it. In New York, this means people who live in New Jersey and work in Brooklyn, Queens, the Bronx, or Long Island, or vice versa; and people who live in Westchester and points north, including Connecticut, and work in Brooklyn, Staten Island, possibly Queens or Long Island, or Newark and points south, and again vice versa. None of these travel markets is by itself very large, but some, especially those involving people working in Brooklyn and Queens, are of moderate size and together they’re about 150,000 commuters, about as many as use each of New York’s three commuter rail system at two trips per person. (All numbers are as of 2000 and come from the census.)

2. Additional lines allow travel even on markets that are not really through-running. A Staten Island-Manhattan tunnel is likely to be used primarily by people from Staten Island working in Manhattan or Downtown Brooklyn rather than by suburb-to-suburb commuters. Staten Island itself produces about 80,000 commuters bound toward Manhattan and Brooklyn, and electrification of the Erie Lines and a connection to Lower Manhattan opens up rail service to about 70,000 Manhattan-bound commuters from Bergen and Passaic Counties.

3. As a continuation of point 2, lines laid out in a way that serves secondary CBDs on the way from the suburbs to the primary CBD can produce additional ridership. For example, the LIRR already has some Brooklyn-bound commuters, and New Jersey Transit some Newark-bound ones; the Erie Lines could produce Jersey City-bound commuters, and one of the reasons to build the Lower Manhattan tunnel via Pavonia or Exchange Place rather than Hoboken is to serve the larger secondary CBDs there. Hudson County has about 30,000 workers commuting in from Bergen and Passaic Counties and 50,000 from Essex County and points west and south.

4. High all-day frequency of local trains together with fare integration with local transit allows people living and working within each inner-suburban region to use regional rail to get to work. The urban analog is that Brooklynites who work in Brooklyn often use the subway, and drive mainly if their commute is orthogonal to the Manhattan-bound orientation of the subway lines. Residents of Newark, Yonkers, Elizabeth, Paterson, Mount Vernon, New Rochelle, and Hempstead drive at higher rates than residents of the Outer Boroughs even when the poverty rates are comparable: a transit trip from Elizabeth to Newark today is either a bus that gets stuck in traffic or an expensive train that comes twice every hour off-peak and only stops at Downtown Elizabeth, the airport, and Downtown Newark. In 2000, only 26% of people working in Downtown Newark got there on public transit (see PDF-p. 13 of this report).

Airports are not very significant traffic generators. The AirTrain JFK has 5.5 million annual riders; the average ratio of annual to weekday ridership on the subway is 300 (on commuter rail, which has a more pronounced peak, it’s about 270), so that’s equivalent to about 18,000 weekday riders. The Newark version has 2 million annual riders. Regional rail is a way to build low-cost rapid transit in areas where there already are mainline railroads that can be used for local and regional service. Deviations need very high ridership to be justified. The tunnels through the CBD, such as the central RER and S-Bahn tunnels or the tunnels under Manhattan that I propose, bring in commuters from many suburbs into the primary CBD and also connect multiple secondary CBDs. Greenfield lines used for some airport extensions, such as in Zurich, are justified by their short length, connections to trains from all over Switzerland, and very high traffic (with nearly 50% mode share) coming from the use of the airport’s landside concessions as a shopping destination.

In contrast, an examination of the four above main travel markets suggests specific ways regional rail must be built and operated to maximize its usefulness. Brooklyn is the largest destination in the region outside Manhattan, and this means that tunnels serving it from more directions than just that of Long Island should be a higher priority. Queens is the second largest destination, and this means that commuter trains using the Northeast Corridor should stop there, with easy transfers to Jamaica, Flushing, and Long Island City for trains not serving those destinations; Sunnyside Junction would especially useful for this.

Moreover, travel market #4 is the most underrated. The potential traffic volume dwarfs all others. Newark has about 4,000 workers who live in areas who would be served by through-running, such as Brooklyn and the Bronx. It has 36,000 workers who live in the city itself, 30,000 who live in the rest of Essex County, 17,000 who live in Union County, and another 17,000 who live in points farther south. The Northeast Corridor, North Jersey Coast, and Morris and Essex Lines already exist, but provide expensive, infrequent service, with stations spaced too far apart for walking to the station. Christie’s PATH extension tellingly does not include a stop at South Street, but instead goes nonstop from Newark Penn Station to the Newark Airport train station. It’s of paramount importance to raise the transit mode share on these internal inner-suburban travel markets.

Tokyo’s CBD has about 2 million workers, the same as Downtown and Midtown Manhattan. The reason Tokyo has so much more rail ridership than New York is not a bigger downtown, or better airport service, but better rail service to secondary job centers, which themselves grow around train stations more closely than in New York. But Downtown Brooklyn, parts of Queens, and Downtown Newark at least already have the transit access, both by subway/PATH and by commuter rail. Present-day commuter rail just doesn’t provide good enough service to compete with parking rates and traffic jams outside Manhattan.

Posted in Incompetence, New York, Regional Rail, Transportation | 48 Comments

More on Vancouver’s Obsession With Filling Buses (Hoisted from Comments)

Via Human Transit, I learn that Translink has a bus service performance summary with an infographic on PDF-page 16 contrasting high- and low-performing routes. As usual, Translink claims that the high-performing routes have strong anchors at their ends as one of the reasons for their success. Unfortunately, the claim is not completely correct, and on top of that the definition of “high-performing” is stretched to make anchored routes look better. In particular, this implicates Vancouver’s strategy of upzoning the most intensely at its southern rim while ignoring its center.

To paraphrase my second comment on Human Transit, the summary rates routes on three metrics: boardings per hour, capacity utilization, and cost per boarding; a high-performing route is one that is in the metro area’s top 25 on all three, and a low-performing one is one that is in the bottom 25 on all three. However, only the first and the third are actually useful for the passenger. The second is a measure of pain – it’s the product of turnover with crowding, and although it can be raised by raising turnover, it can also be raised by making the bus more crowded.

An updated list of Vancouver buses and their productivity measures is available here. Measured by cost per rider and boardings per hour, the unanchored 8 is more productive than the 49, which has anchors but nothing in between. But the 8 ranks 29th in capacity utilization, so it’s penalized. The 5 and the 6, which are very short routes serving the West End, are also penalized solely because of their low crowding levels and their short length, which makes turnover more difficult. The 8 has high turnover (like the 3 and 20, which did make the infographic), so it achieves more passenger boardings per hour but fewer passenger-km despite its weak outer-end anchor, and the 5 and 6 are so short that even passengers riding all the way through provide many boardings per hour relative to capacity utilization.

Translink unfortunately does not break down capacity utilization into its two components, and only cites the crowding level at the most crowded point of the average trip. But we can still construct a table of some routes with their performance on the three metrics as well as their crowding level:

Route Boardings/hr Capacity use Peak Crowding Cost/boarding
3 113 110% 49% $0.89
5 105 67% 53% $0.95
6 98 68% 48% $1.02
8 102 98% 41% $0.98
9 103 160% 64% $0.97
20 113 124% 50% $0.89
25 81 187% 74% $1.23
41 105 180% 78% $0.95
49 96 169% 82% $1.04
99 176 167% 86% $0.57

The 3, 9, 20, 41, 49, and 99 are in the infographic on the list of most productive routes; the 25 narrowly misses on cost per passenger and boardings per hour but is second systemwide in capacity utilization, and the 5, 6, and 8 miss only on capacity utilization. The 25 and 49 have strong anchors at their outer ends, a single strong central anchor at the Canada Line, and nothing else; On the metrics relevant to the passenger who’s expected to ride the bus and fund it by paying a fare, they are somewhat lower-performing than the short 5 and 6 and the short-trip-encouraging 3, 8, and 20, but have far more crowding. The 9 and 41, both in the infographic, are about on a par with the 3, 5, 6, 8, and 20, and have more turnover due to additional destinations on Broadway and 9th that don’t exist on King Edward and 49th, but are still much more crowded than the unanchored routes. The 99 beats all others in performance, but the cost in terms of crowding is even higher.

The purpose of anchoring is explicitly to keep buses full all the way; the 25 and 49 are great at that, since people ride them longer distances, not having much to go to between their major destinations. However, it’s not a measure of passenger satisfaction or of transit agency finances, but of passenger-km. The surreptitious focus on passenger-km is dubious as a performance metric for urban transit, since transit-using city dwellers usually prefer shorter commutes and do most non-work trips on foot.

And if it’s dubious as a transit proposition, then as an urbanist proposition it’s destructive. As discussed in my previous post on the subject, Vancouver is upzoning Marine Drive (slightly) more intensely than the area south of Broadway and near the stations on the Canada Line between Broadway and Marine Drive – see PDF-pp. 26-27 of the draft plan. Despite the hysteria about urban planners using social engineering to make people live close to city center and take transit instead of driving, here we have a city with an otherwise well-deserved reputation for greenness using social engineering to make people live farther out.

This focus on anchors is making Vancouver build itself to be on a regional scale like how the 25 and 49 look on the local scale. The famous high-rise Vancouverism is really about looking like the 5 and 6 – i.e. upzoning near Downtown so that people will walk or take short trips – but future development is not intended to occur near Downtown but rather in strategically chosen secondary CBDs farther away. And what is really needed is continuous corridor development, as is practiced on the corridors hosting the 3, the 8, and the 20.

Posted in Development, Transportation, Urban Transit, Urbanism, Vancouver | 20 Comments

Monorail Construction Costs

Supporters of monorail and other sleek structures argue that because the structures are thinner than conventional rail viaducts, they’re cheaper and more aesthetic. They even argue that viaducts, which are more expensive than at-grade construction, are actually better. Transrapid does that, and Hyperloop does that as well. Hyperloop proponents specifically mention the the structure’s lighter weight as an explanation for the lower proposed cost – see my post update and the comments for extensive discussion and explanation for why the proposed Hyperloop costs are still an order of magnitude too low to be realistic.

Not having reliable construction costs for the intercity modes, I went and looked for construction costs of urban monorails, which are usually put above-ground, where their sleekness is a major advantage over conventional rail since they do not darken the street as much.

The resource with the most information is a JRTR article about Japanese intermediate-capacity rail, including both monorail and significantly less sleek automated guideway transit (AGT). It includes a diagram of monorail structures, which can be seen to be quite light and thin. The width of the structure from guideway to guideway is 4.5 meters including both guideway widths, and including the outside appears to raise it to 5.5. Two-track elevated conventional rail structures typically range from 7 to 10.5 meters wide.

The most recent Japanese monorail on the list, the Tama Monorail in suburban Tokyo, opened 1998, was $2.422 billion for 16 km: $151 million per km.

The one Japanese project more recent than the JRTR article, the Okinawa Monorail, built from 1996 to 2003, was $1.1 billion for 13 km: $85 million per km. The cost cited on the Monorail Society’s webpage is less than a third that amount. An extension to begin construction soon is projected at $350 million for 4 km, about the same cost per km.

Other Tokyo projects are not cheaper than the Tama Monorail. The AGT Yurikamome, opened 1995, cost $140 million per km as per JRTR; the Tohoku Jukan Line, a conventional elevated structure on top of an older elevated structure located in Central Tokyo, is $400 million for 1.3 km of new el and 2.5 additional km of new track on existing structure, which is $300 million per km if one considers the cost of everything except the new el to be zero, and about $150 million per km if the 2.5 km of existing structure is deemed to cost as much as at-grade rail, which is about half as much as an el typically. The ratio of elevated to underground cost is 2-3 and this is also in line with $150 million per km of baseline cost.

Outside Japan, we have the following projects, with their costs:

Chongqing Rail Transit Line 3: the first phase, built from 2007 to 2011, is ¥13.8 billion for 39 km, or in PPP dollars $88 million per km. About a third of the line is underground. An extension opened in 2013 cost ¥5.7 billion for 16.5 km (Chin.), or $85 million per km, all elevated. This is in a country where fully underground subways average about $150 million per km; but I cannot find cost figures for other lines in Chongqing itself, and any help would be appreciated.

Moscow Monorail: according to Wikipedia, 6.33 billion rubles in 2001-4, or $514 million in 2010 PPP dollars, for 4.7 km. This is $109 million per km, all elevated.

AirTrain Newark: the airport-internal people mover opened in 1996 and cost $354 million for 3 km, while the extension to the mainline train station was built from 1997 to 2000, added another 1.8 km to the project, and cost $415 million; both numbers are taken from the New York Times. Deflating both numbers to 1998, this is $1.03 billion for 4.8 km, or $215 million per km. In contrast, AirTrain JFK, a SkyTrain-like system, was $1.9 billion for 13 km and was built from 1998 to 2002, which in 2010 dollars is $185 million per km, actually lower than the cost of the monorail. Note that the AirTrain construction cost was not that high by normal-world standards: the same technology in Vancouver, in all-elevated configuration, is projected at C$116-150 million per km into Surrey when all elevated (see RRT alternatives 1 and 3 with distances of 15.5 km for 1 and 6 km for 3 as measured on a map), which is about US$95-120 million after PPP conversion. This is a 50-100% premium for New York over Vancouver prices, compared with a 400-600% premium for subway construction.

Palm Jumeirah Monorail, Dubai: Dh4.1 billion for 5.45 km, built 2006-8, about $1 billion in 2010 PPP dollars. This is $183 million per km, all elevated. Compare with the 17% underground Dubai Metro, mentioned in my previous post, which costs half as much per km.

Mumbai Monorail: the master plan is to spend 20,000 crore on 135 km, which after PPP conversion is $66 million per km. The under-construction first line is 3,000 crore for 19.54 km, or $69 million per km, all elevated. This compares with a parallel Mumbai Metro plan to build 146 km for 36,000 crore, or $111 million per km, of which according to Wikipedia 32 km, or 22%, is to be underground. This by itself suggests no monorail cost saving. But the first Mumbai Metro line is already over budget, at 3,800 crore, which again using Wikipedia for length (11.07 km) gives $154 million per km, all elevated. This suggests that in Mumbai there is a cost saving from using monorail, assuming all numbers are correct and that the Monorail Line 1 cost is not just the first phase, which is only 8 km.

Posted in Construction Costs, Transportation | 56 Comments

Is Low-Cost Intercity Rail Possible?

Update: see corrected Shinkansen staffing numbers below

The last few decades have seen the growth of airlines and bus operators that reduce operating costs using a variety of lean-production ideas, chiefly using the equipment for more hours per day to earn more revenue with the same fixed costs. This hasn’t generally happened for rail, even in the presence of competition between operators. There is one low-cost option, on the TGV network, which like Ryanair and easyJey cuts costs not only by leaner production but also by reducing passenger comfort and convenience. I contend that an intermediate solution should be investigated: lean like Southwest and JetBlue, but without the extra fees, which are lower on those two airlines than on legacy US airlines.

First, the preexisting fares. In Japan, JR Central charges an average of $0.228 per passenger-km on the Shinkansen, JR East charges $0.245, JR West charges $0.208. In Japan nearly all intercity service is Shinkansen; averaging all JR East rail other than Tokyo-area commuter rail, even commuter rail around Sendai and Niigata, drops the average marginally, to $0.217. European intercity rail fares per passenger-km are lower: €0.104 on RENFE (PDF-p. 27), €0.108 on DB, and €0.112 on SNCF. All of those companies are profitable and do not receive subsidies for intercity rail, with the exception of RENFE, which loses small amounts of money (-0.8% profit margin). This is far lower than Northeast Corridor fare, which, as of the most recent monthly report, averages $0.534 per passenger-km on the Acela and $0.292 on the Regional.

Now, we can try penciling what operating costs should be. The most marginal costs, which grow linearly with the addition of new service, look a lot like those of low-cost private bus operators: crew, cleaners, energy, rolling stock acquisition, rolling stock maintenance. I am specifically handwaving the peak factor – frequency is assumed to be constant, to establish the operating cost of the base rather than that of the peak. I am going to assume 1,120 seats per train, all coach, about the same as a 16-car Shinkansen with 2+2 standard-class seating, or 70 per car. First class should be thought of as an equivalent of buying extra seats – fares should scale with the amount of space per passenger, and at any rate most cars are coach. Occupancy rate will be taken to be 57%, for a round 40 passengers per car; this is well within the range of HSR occupancy.

The cost turns out to be quite low – this is similar to the analysis in Reason & Rail from 2 years ago, except for now I’m leaving out infrastructure costs, which in that analysis are the dominant term, and so excluding them leads to very low costs. It is about three cents per passenger-km in operating and maintenance costs. This is of course not what HSR currently costs, but should be thought of as a lower limit or as the marginal cost of increasing base service.

A crew on a high-speed train is a train driver and a conductor. A 16-car Shinkansen train appears to have one conductor judging by the single conductor’s compartment has three conductors (see Andrew in Ezo’s comment below); the TGV has much more staffing, with the low-cost TGV having four. US salaries are high because the railroads have good unions: according to the Manhattan Institute’s applet for public employees’ salaries, on the LIRR, the average train driver makes $103,000 a year (search for “engineer”) and on Metro-North $115,000 (search for “locomotive engineer”). This is higher than on the Shinkansen. A conductor makes $98,000 on the LIRR and $105,000 on Metro-North. Figure $240,000 per year for a two-person crew $440,000 per year for a four-person crew.

We need to convert this to operating hours. On the LIRR and Metro-North, there are about 4,500 revenue car-hours per driver-year, which translates to about 600 revenue train-hours. At an average speed of 200 km/h, HSR would cost $2 $3.67 per train-km, or $0.003125 $0.0057 per passenger-km. But Metro-North and the LIRR are inefficient due to a prominent peak making smooth scheduling difficult; HSR can schedule a simple shift with a roundtrip of about 6-7 hours plus rest time, and if each employee does this 5 days a week minus holidays this is 1,200 revenue hours. This halves the cost. Conversely, going to 4 conductors, with a five-person crew paid a total of $540,000 per year, raises the cost to $0.007 per passenger-km, still low.

Electricity consumption can be calculated from first principles based on acceleration characteristics, or based on real-life HSR consumption levels. For the latter, a UIC paper claims 73 Wh/passenger-km on PDF-p. 17; this appears to be based on an assumption (see PDF-p. 33) of 70% occupancy but a train that is smaller (397 seats for 8 cars) and heavier (425 t vs. 365 t for an 8-car Shinkansen). Correcting for these gives 54 Wh/p-km. When I try to derive this from first principles assuming Northeast Corridor characteristics but with substantial segments upgraded to 360 km/h, I get about 50 Wh/p-km; this doesn’t include losses between catenary and wheel or regenerative braking, which mostly cancel each other out with losses being a little bigger. Rounding up to 56 Wh/p-km and using a transportation-sector electricity cost of $0.125 per kWh, we get $0.007 in electricity cost per passenger-km.

Cleaning should be done as fast as possible, with large crews working to turn trains around in the minimum amount of time based on safety margins and schedule recovery. JR East cleans Shinkansen trains in 12 minutes of Tokyo turnaround time minus 5 minutes for letting passengers disembark; the team size is 1 cleaner per standard-class car and 2-3 per green car, for a total of 22. This does not mean we can pencil in just 7 minutes of cleaning, since this doesn’t take into account the cleaning crew’s time waiting for a train to arrive, or downtime in case trains don’t arrive exactly one turnaround time apart. For a 4 tph operation, 15 minutes are fine, but for a 6 tph one, 10 may not be enough, requiring going up to 20. This is once per train run, so once per 720 km. With a team size of 24, that’s 24 person-hours per 720 train-km, or 32 in the 6 tph version.

Again using Manhattan Institute data, cleaners make $50,000 a year; it’s possible wages will have to go up to attract people who can consistently clean a car on the tight schedules posited, but there’s no base of comparison of companies having both Japanese standards for scheduling and American union scales. Say $30 per hour on the job (including downtime and waiting for a train, but not scheduled breaks). In the 6 tph version, this costs $0.002 per passenger-km.

RENFE’s above-linked executive summary includes a breakdown of employees by category (regular, support, and managerial) and gender on PDF-p. 46, whence we can obtain that for each operations employee there are 0.2 managers and 0.07 support employees. For capital projects, the California HSR estimates add 20% for overhead, management, and design, not including contingency, and the Penn Design estimate adds 18% (PDF-p. 247). This should be taken as the marginal cost of extra managers to oversee extra employees hired to provide additional service. In total, this is roughly $0.019 per passenger-km assuming higher crew staffing, and $0.013 $0.0175 assuming lower staffing.

Rolling stock is more expensive, and should spend as much time earning revenue as feasible based on established maintenance protocols. A large share of the operating costs of high-speed rail comes from the rolling stock: 20% on Madrid-Barcelona according to a RENFE presentation to California HSR whose official source is now a dead link, and, from eyeballing, perhaps 25% according to PDF-p. 8 of a UIC presentation about track access charges. The low-cost TGV doubles train utilization to about a million kilometers a year. This should be routine on Northeast Corridor operations: two round-trips per train, about 14-15 hours per day including turnaround time, 1 million train-km a year. Procurement of new N700s costs about $3 million per car, and Japanese depreciation schedules are over 20 years. Other trains capable of more than 250 km/h cost $4 million per car in China; with mid-life refurbishment of non-trivial cost, they can last up to 40. With 4% interest cost, depreciation and interest are about $280,000 per car-year either way, and if a car travels a million km with 40 people on average, that’s another $0.007 per passenger-km, a substantial sum so far.

Rolling stock maintenance is also relatively expensive. California HSR’s 2012 business plan has a list of costs around the world on PDF-p. 136. JR Central’s rolling stock maintenance is $7.20 per trainset-mile, which with our assumptions translates to $0.007 per passenger-km. European rolling stock maintenance costs are $4.16 per trainset-mile, which appears to be for an 8-car train, so scaling up by a factor of two gives $0.008 per passenger-km. Note that the maintenance of the rolling stock costs as much as the depreciation and interest on its acquisition.

In reality, maintenance depends on both time and distance, so increasing rolling stock utilization leads to lower costs per train-km. Since with those assumptions, the rolling stock costs about as much as the actual operations, this is a major cost cutter, though not a game changer given other costs. Note that the RENFE presentation slide also includes a large array of fixed costs and infrastructure (maintenance, which is very cheap at about $100,000 per route-km per year, and depreciation and interest on construction, which aren’t so cheap) as well as managerial overheads, hence the 20%; the UIC presentation includes some overheads as well. However, those fixed costs are more affordable if they’re spread across more service. A line built to have a 6 tph capacity has the same infrastructure cost at any frequency up to 6 tph.

So far, adding up all the operating and rolling stock costs totals to about $0.03 $0.033 per passenger-km. This means $11 $12 direct operating costs between New York and Washington or New York and Boston. It’s also a quarter what the Europeans charge for HSR tickets, and an eighth of what the Japanese charge. Despite this, the California HSR numbers are similar, so this analysis passes a sanity check. Again referring to the business plan’s PDF-p. 136, the table claims operating costs per trainset-mile that, after scaling from 8- to 16-car trains, are $0.04 per passenger-km. They exclude rolling stock acquisition, but include maintenance; but the assumptions in the Operations and Maintenance Peer Review are worse than in this post, with worse train utilization (turnaround times are assumed to be 40 minutes on PDF-p. 21) and more staff on board each train (an engineer, a conductor, an assistant conductor, a ticket collector, and a special services employee per 8-car unit, for a total of ten employees for 16 cars).

Still, I have no expectation that anyone can charge $11 $12 profitably for HSR service between New York and Washington. However, I strongly believe costs could be brought substantially below current rates. I believe the reason SNCF has only begun to do that and other operators not at all comes from two places.

First, infrastructure charges, a third of the cost of both the TGV and the Madrid-Barcelona AVE, are not just about paying off infrastructure costs (both Spain and France are low-construction cost countries for HSR). They transfer profits from the HSR operator to the monopoly infrastructure owner: track access charges were specifically increased in France ahead of the opening of the European rail market to competition, ensuring HSR surplus would go to state-owned infrastructure owner RFF rather than to foreign companies or the customers.

And second, unlike in the US, in Europe low-cost airlines are associated with terrible service: low seat pitch, hidden fees, rigid policies toward carry-on baggage, rigid policies toward missed flights, worse customer satisfaction, secondary airports located far from the cities they purportedly serve. The US has some of this in Spirit Airlines and Allegiant Airways, but it also has Southwest, JetBlue, and Virgin Atlantic, which have high customer satisfaction, flexible tickets, secondary airports located close to city centers (such as Dallas Love Field), and seat pitch equal to or better than that of the legacy airlines, which have degraded service. Europeans hate low-cost flying; Americans hate flying. The result is that Ryanair tars any attempt to lower costs in Europe by associating lean production and high equipment utilization with no-frills third-class service. This might make managers more wary of adopting some of the more positive aspects of low-cost carriers. Japan has no major low-cost carriers, so although it does not have the stigma, it doesn’t have the domestic experience, either.

I do not believe it’s possible for a train to charge $11 $12 one-way between New York and Washington and stay in business. There needs to be some profit margin, plus paying back infrastructure construction costs. However, I do believe it’s possible to charge closer to that than to present European HSR fares for the same distance (about $45), let alone present Amtrak fares. California HSR is actually pointing the way, but has such high construction costs that paying off even part of construction represents a major rise in ticket fares. The Northeast can and should do better.

Posted in Amtrak, High-Speed Rail, Transportation | 56 Comments

Loopy Ideas Are Fine, If You’re an Entrepreneur

There is a belief within American media that a successful person can succeed at anything. He (and it’s invariably he) is omnicompetent, and people who question him and laugh at his outlandish ideas will invariably fail and end up working for him. If he cares about something, it’s important; if he says something can be done, it can. The people who are already doing the same thing are peons and their opinions are to be discounted, since they are biased and he never is. He doesn’t need to provide references or evidence – even supposedly scientific science fiction falls into this trope, in which the hero gets ideas from his gut, is always right, and never needs to do experiments.

Thus we get Hyperloop, a loopy intercity rail transit idea proposed by Tesla Motors’ Elon Musk, an entrepreneur who hopes to make a living some day building cars. And thus a fair amount of the media coverage is analysis-free summary of what Tesla already said: see stenography by ABC, Forbes, the Washington Post’s Wonkblog, and even BusinessWeek (which added that critics deal with “limited information”). Some media channels are more nuanced, sometimes even critical; the Wall Street Journal deserves especial credit, but Wonkblog also has a second, mildly critical post. But none has pressed Musk or Tesla about the inconsistencies in his proposal, which far exceed the obvious questions about the proposed $6 billion price tag (compare $53 billion in today’s money for California HSR). For better prior criticism, see James Sinclair’s post and Clem Tillier’s comment on California HSR Blog.

My specific problems are that Hyperloop a) made up the cost projections, b) has awful passenger comfort, c) has very little capacity, and d) lies about energy consumption of conventional HSR. All of these come from Musk’s complex in which he must reinvent everything and ignore prior work done in the field; these also raise doubts about the systems safety that he claims is impeccable.

In principle, Hyperloop is supposed to get people from Los Angeles to San Francisco in half an hour, running in a tube with near-vacuum at speeds topping at 1,220 km/h. In practice, both the costs and the running times are full of magic asterisks. The LA end is really Sylmar, at the edge of the LA Basin; with additional access time and security checks, this is no faster than conventional HSR doing the trip in 2:40. There is a crossing of the San Francisco Bay, but there’s no mention of the high cost of bridging over or tunneling under the Bay – we’re supposed to take it on faith the unit cost is the same as along the I-5 corridor in the Central Valley.

There is no systematic attempt at figuring out standard practices for cost, or earthquake safety (about which the report is full of FUD about the risks of a “ground-based system”). There are no references for anything; they’re beneath the entrepreneur’s dignity. It’s fine if Musk thinks he can build certain structures for lower cost than is normal, or achieve better safety, but he should at least mention how. Instead, we get “it is expected” and “targeted” language. On Wikipedia, it would get hammered with “citation needed” and “avoid weasel words.”

The worst is the cost of the civil infrastructure, the dominant term in any major transportation project’s cost. Hundreds of years of incrementally-built expertise in bridge building is brushed aside with the following passage:

The pods and linear motors are relatively minor expenses compared to the tube itself – several hundred million dollars at most, compared with several billion dollars for the tube. Even several billion is a low number when compared with several tens of billion proposed for the track of the California rail project.

The key advantages of a tube vs. a railway track are that it can be built above the ground on pylons and it can be built in prefabricated sections that are dropped in place and joined with an orbital seam welder. By building it on pylons, you can almost entirely avoid the need to buy land by following alongside the mostly very straight California Interstate 5 highway, with only minor deviations when the highway makes a sharp turn.

In reality, an all-elevated system is a bug rather than a feature. Central Valley land is cheap; pylons are expensive, as can be readily seen by the costs of elevated highways and trains all over the world. The unit costs for viaducts on California HSR, without overhead and management fees, are already several times as high as Musk’s cost: as per PDF-page 15 of the cost overrun breakdown, unit costs for viaducts range from $50 million to $80 million per mile. Overheads and contingencies convert per-mile cost almost perfectly to per-km costs. And yet Musk thinks he can build more than 500 km of viaduct for $2.5 billion, as per PDF-page 28 of his proposal: a tenth the unit cost. The unrealistically low tunnel unit cost is at least excused on PDF-page 31 on the grounds that the tunnel diameter is low (this can also be done with trains if they’re as narrow as Hyperloop, whose capsule seating is 2-abreast rather than 4- or 5-abreast as on HSR; see below on capacity). The low viaduct unit cost is not.

This alone suggests that the real cost of constructing civil infrastructure for Hyperloop is ten times as high as advertised, to say nothing of the Bay crossing. So it’s the same cost as standard HSR. It’s supposedly faster, but since it doesn’t go all the way to Downtown Los Angeles it doesn’t actually provide faster door-to-door trip times.

Nor is the system more comfortable for the passenger. Levitating systems can get away with higher cant than conventional rail because they sway less: Transrapid’s lateral acceleration in the horizontal plane is about 3.6 m/s^2 in Shanghai, and the company claims 4.37 m/s^2 is possible. On standard-gauge rail, the conversion rate is approximately 150 mm of total equivalent cant per 1 m/s^2. HSR cant tops at 180-200 mm, and cant deficiency tops at 180 mm for Talgos and 270-300 mm for medium-speed Pendolinos, so about 2.5 m/s^2 at high speed; this was shown safe by simulation in Martin Lindahl’s thesis, which is also a good source for track construction standards.

But Hyperloop goes one step further and proposes a lateral acceleration of 4.9 m/s^2: 0.5 g. This is after canting, according to the standards proposed:

The Hyperloop will be capable of traveling between Los Angeles and San Francisco in approximately 35 minutes. This requirement tends to size other portions of the system. Given the performance specification of the Hyperloop, a route has been devised to satisfy this design requirement. The Hyperloop route should be based on several considerations, including:

  1. Maintaining the tube as closely as possible to existing rights of way (e.g., following the I-5).
  2. Limiting the maximum capsule speed to 760 mph (1,220 kph) for aerodynamic considerations.
  3. Limiting accelerations on the passengers to 0.5g.
  4. Optimizing locations of the linear motor tube sections driving the capsules.
  5. Local geographical constraints, including location of urban areas, mountain ranges, reservoirs, national parks, roads, railroads, airports, etc. The route must respect existing structures.

For aerodynamic efficiency, the velocity of a capsule in the Hyperloop is

  • 300 mph (480 kph) where local geography necessitates a tube bend radii < 1.0 mile (1.6 km)
  • 760 mph (1,220 kph) where local geography allows a tube bend > 3.0 miles (4.8 km) or where local geography permits a straight tube.

These bend radii have been calculated so that the passenger does not experience inertial accelerations that exceed 0.5 g. This is deemed the maximum inertial acceleration that can be comfortably sustained by humans for short periods. To further reduce the inertial acceleration experienced by passengers, the capsule and/or tube will incorporate a mechanism that will allow a degree of ‘banking’.

0.5 g, or 4.9 m/s^2, is extreme. Non-tilting trains do not accelerate laterally at more than 1.2 m/s^2 in the plane of the track (i.e. after accounting for cant), and at high speed they have lower lateral acceleration, about 0.67 m/s^2 with limiting cases of about 0.8 for some tilting trains relative to the plane of the train floor. For example, the Tokaido Shinkansen has 200 mm of cant and maximum speed of 255 km/h on non-tilting trains on 2,500-meter curves, for 100 mm of cant deficiency, or 0.67 m/s^2.

The proposed relationship between curve radius and speed in the Hyperloop standards is for a lateral acceleration much greater than 4.9 m/s^2 in the horizontal plane: 480 km/h at 1,600 meters is 11.1 m/s^2. This only drops to 5 m/s^2 after perfectly canting the track, converting the downward 9.8 m/s^2 gravity and the sideways acceleration into a single 14.8 m/s^2 acceleration vector downward in the plane of the capsule floor, or 5 m/s^2 more than passengers are used to. This is worse than sideways acceleration: track standards for vertical acceleration are tighter than for horizontal acceleration, about 0.5-0.67 m/s^2, one tenth to one seventh what Musk wants to subject his passengers to. It’s not transportation; it’s a barf ride.

Even 4.9 m/s^2 in the horizontal plane is too much. With perfect canting, it combines with gravity to accelerate passengers downward by 11 m/s^2, 1.2 m/s^2 more than the usual, twice as high as the usual standards. Motion sickness is still to be fully expected in such a case. Transrapid’s 4.37 m/s^2, which adds 0.93 m/s^2 in the vertical component with perfect canting, is the limit of what’s possible.

Speaking of vertical acceleration, this gets no comment at all in the Hyperloop proposal. At 1,220 km/h, it is very hard to climb grades, which would require very tall viaducts and deep tunnels under mountains. Climbing grades is easy, but vertical acceleration is such that the vertical curve radius has to be very large. A lateral acceleration of 0.67 m/s^2 would impose a minimum vertical curve radius of 170 km, versus 15 km at 360 km/h HSR speed. Changing the grade from flat to 2% would take 3.4 km, and changing back would take the same, so for climbing small hills, the effective average grade is very low (it takes 6.8 km to climb 68 meters).

Nor does jerk get any treatment. Reversing a curve takes several seconds at the cant and cant deficiency of conventional HSR (about 3 seconds by Swedish standards, more by German ones); reversing a curve with the extreme canting levels of Hyperloop would take much longer. Maintaining comfort at high total equivalent cant requires tight control of the third derivative as well as the second one; see a tilting train thesis for references.

The barf ride that is as expensive as California HSR and takes as long door-to-door is also very low-capacity. The capsules are inexplicably very short, with 28 passengers per capsule. The proposed headway is 30 seconds, for 3,360 passengers per direction per hour. A freeway lane can do better: about 2,000 vehicles, with an average intercity car occupancy of 2. HSR can do 12,000 passengers per direction per hour: 12 trains per hour is possible, and each train can easily fit 1,000 people (the Tokaido Shinkansen tops at 14 tph and 1,323 passengers per train).

But even 30 seconds appears well beyond the limit of emergency braking. It’s common in gadgetbahn to propose extremely tight headways, presuming computerized control allowing vehicles to behave as if they’re connected by a rod. Personal rapid transit proponents argue the same. In reality, such systems have been a subject of research for train control for quite a while now, with no positive results so far. Safety today still means safe stopping distances. If vehicles brake at a constant rate, the safe headway is half the total deceleration time; if a vehicle brakes from 1,220 km/h to zero in 60 seconds, the average acceleration is more than 5 m/s^2, twice the current regulatory safety limit for passengers with seat belts.

Most of this could be chalked to the feeling of some entrepreneurs that they must reinvent everything. The indifference to civil engineering costs, passenger comfort issues, and signal safety could all be chalked to this. So could the FUD about earthquake safety of HSR on PDF-page 5.

However, one thing could not: the chart on PDF-page 9 showing that only the Hyperloop is energy-efficient. The chart has a train consuming nearly 900 megajoules per person for an LA-San Francisco trip, about as much as a car or a plane; this is about 1,300 kJ per passenger-km. This may be true of Amtrak’s diesel locomotives; but energy consumption for HSR in Spain is on average 73 Watt-hour (263 kJ) per passenger-km (see PDF-page 17 on a UIC paper on the subject of HSR carbon emissions), one fifth as much as Tesla claims. Tesla either engages in fraud or is channeling dodgy research about the electricity consumption of high-speed trains.

Indeed, a train with a thousand seats, 20 MW of power drawn, 60% seat occupancy, and a speed of 360 km/h can only ever expend 333 kJ per passenger-km while accelerating, and much less while cruising (acceleration at lower speed requires more energy per unit of distance, but cruising at lower speed expends only a fraction of the energy of full-power acceleration). Tesla’s train energy consumption numbers do not pass a sanity check, which suggests either reckless disregard for the research or fraud. I wouldn’t put either past Musk: the lack of references is consistent with the former, and the fact that Musk’s current primary endeavor is a car company is consistent with the latter.

There is no redeeming feature of Hyperloop. Small things can possibly be fixed; the cost problems, the locations of the stations, and the passenger comfort issues given cost constraints can’t. Industry insiders with ties to other speculative proposals meant to replace conventional rail, such as maglev, are in fact skeptical of Hyperloop’s promises of perfect safety.

It’s possible to discover something new, but people who do almost always realize the context of the discovery. If Musk really found a way to build viaducts for $5 million per kilometer, this is a huge thing for civil engineering in general and he should announce this in the most general context of urban transportation, rather than the niche of intercity transportation. If Musk has experiments showing that it’s possible to have sharper turns or faster deceleration than claimed by Transrapid, then he’s made a major discovery in aviation and should announce it as such. That he thinks it just applies to his project suggests he doesn’t really have any real improvement.

In math, one common sanity check on a result is, “does it prove too much?” If my ten-page paper proves a result that implies a famous open problem, then either my paper is wrong or I’ve proved the famous open problem, and it’s up to me to take extra care to make sure I did not miss anything. Most people in this situation do this extra step and then realize that they were subtly wrong. If a famous question could be solved in ten pages, it probably wouldn’t still be open. The same is even true in undergrad-level proof classes: if your homework answer proves things that are too strong, you’ve almost certainly made a mistake.

Musk’s real sin is not the elementary mistakes; it’s this lack of context. The lack of references comes from the same place, and so does the utter indifference to the unrealistically low costs. This turns it from a wrong idea that still has interesting contributions to make to a hackneyed proposal that should be dismissed and forgotten as soon as possible.

I write this not to help bury Musk; I’m not nearly famous enough to even hit a nail in his coffin. I write this to point out that, in the US, people will treat any crank seriously if he has enough money or enough prowess in another field. A sufficiently rich person is surrounded by sycophants and stenographers who won’t check his numbers against anything.

There are two stories here. In the less interesting one, Musk is a modern-day streetcar conspiracy mogul: he has a car company, he hopes to make money off of it in the future and uses non-generally accepted accounting to claim he already does, and he constantly trash-talks high-speed rail, which competes with his product. Since he’s not proposing to build Hyperloop soon, it could be viewed as clever distraction or FUD.

The more interesting possibility, which I am inclined toward, is that this is not fraud, or not primarily fraud. Musk is the sort of person who thinks he can wend his way from starting online companies to building cars and selling them without dealerships. I have not seen a single defense of the technical details of the proposal except for one Facebook comment that claims, doubly erroneously, that the high lateral acceleration is no problem because the tubes can be canted. Everyone, including the Facebook comment, instead gushes about Musk personally. The thinking is that he’s rich, so he must always have something interesting to say; he can’t be a huckster when venturing outside his field. It would be unthinkable to treat people as professionals in their own fields, who take years to make a successful sideways move and who need to be extremely careful not to make elementary mistakes. The superheros of American media coverage would instantly collapse, relegated to a specialized role while mere mortals take over most functions.

This culture of superstars is a major obstacle frustrating any attempt to improve existing technology. It more or less works for commercial websites, where the startup capital requirements are low, profits per employee are vast, and employee turnover is such that corporate culture is impossible. People get extremely rich for doing something first, even if in their absence their competitors would’ve done the same six months later. Valve, a video game company that recognizes this, oriented its entire structure around having no formal management at all, but for the most part what this leads to is extremely rich people like Bill Gates and Mark Zuckerberg who get treated like superstars and think they can do anything.

In infrastructure, this is not workable. Trains are 19th-century technology, as are cars and buses. Planes are from the 20th century. Companies can get extremely successful improving the technology somehow, but this works differently from the kind of entrepreneurship that’s successful in the software and internet sectors. The most important airline invention since the jet engine is either the widebody (i.e. more capacity) or the suite of features that make for low-cost flights, such as quick turnarounds. What Southwest and its ultra low-cost successors have done is precious: they’ve figured how to trim every airline expense, from better crew utilization to incentives for lower-transaction cost booking methods. This requires perfect knowledge of preexisting practices and still takes decades to do. The growth rate of Microsoft, Google, and Facebook is not possible in such an environment, and so the individual superstar matters far less than a positive corporate culture that can transmit itself over multiple generations of managers.

There is plenty of room for improvement in HSR technology, then, but it’s of a different kind. It involves adapting techniques used by low-cost airlines to reduce costs, as SNCF is doing right now with its new low-cost TGV product. It perhaps involves controlling construction costs more tightly, though $5 million per km for viaducts seems like an impossible fantasy. But it has to come from within the business, or from someone who intimately understands the business.

And with the kind of success that US media harps on, this is almost impossible to do domestically. Someone as smart as Musk, or any of many other Silicon Valley entrepreneurs, could find a detailed breakdown of the operating and construction costs of civil infrastructure, and figure out ways of reducing them, Megabus- or Southwest-style. That’s what I would do if I had the unlimited resources Musk has: I’d obtain unit costs at far greater detail than “X meters of tunnel cost $Y” and compare what New York is doing wrong that Madrid is doing right. But I don’t have the resources – in money, in ability to manage people, in time. And the people who do are constantly told that they don’t need to do that, that they’re smart enough they can reinvent everything and that the world will bow to their greatness.

Update: people all over the Internet, including in comments below, defend the low cost projections on the grounds that the system is lighter and thinner than your average train. The proposal itself also defends the low tunneling costs on those same grounds. To see to what extent Musk takes his own idea seriously, compare the two proposals: the first for a passenger-only tube, and the second for a larger tube capable of carrying both passengers and vehicles. On PDF-pp. 25-26, the proposal states that the passenger-only tube would have an internal diameter of 2.23 meters and the passenger-plus-vehicle tube would have an internal diameter of 3.3 meters, 47% more. Despite that, the tunneling costs on PDF-p. 28 are $600 and $700 million, a difference of just 17%.

The same is true of the “but the Hyperloop capsule is lighter than a train” argument for lower pylon construction costs. Together with the differences in tube thickness posited on PDF-p. 27, 20-23 mm versus 23-25, there is 60% more tube lining in the passenger-plus-vehicle version, but the tube and pylons are projected to cost just 24% more. In this larger version, the twin tube has 0.025*3.3*pi*2 = 0.5 cubic meters of steel per meter of length, weighing about 4 tons. This ranges from a bit less than twice to a bit more than twice the weight of a train. To say nothing of the pylons’ need to support their own considerable weight, which is larger than for HSR due to the need for taller viaducts coming from the constrained ability to change grade. They are far more obtrusive than trees and telephone poles, contra the claims of minimal obtrusiveness and disruption.

Posted in High-Speed Rail, Incompetence, Politics and Society, Transportation | 560 Comments

Tel Aviv Needs a Subway, Done Right

After decades of false starts, Tel Aviv is finally building a subway-surface line. The political opinions of activists and urban planners in Israel are divided between supporters, who believe the line is long overdue, and opponents, who instead believe buses remain the solution and also oppose the Jerusalem light rail. I on the contrary think that on the one hand Tel Aviv needs a subway, but on the other hand the current plan has deep flaws, both political and technical, and is learning the wrong lessons from recent first-world greenfield subways.

In some ways, the Tel Aviv subway resembles New York’s Second Avenue Subway. It passes through neighborhoods that are very dense – the line under construction connects some of the densest cities in Israel, albeit poorly. Nobody believes it will be built because of all the false starts. Real incompetence in construction leading to cost overruns has led to speculation about much greater cost overruns.

For nearly a hundred years, the conurbation around Tel Aviv and Jaffa has been the largest metro area in what is now Israel; it is also the largest first-world metro area outside the US that has no urban rail. There were preliminary plans for a Tel Aviv subway in the 1930s, followed by repeated plans since independence, all of which were shelved. A proposal from just after independence for developing coastal Israel around rail and rapid transit trunks was rejected by Prime Minister David Ben Gurion because it conflicted with the political goal of Jewish population dispersal; to further its political goals, the state concentrated on building roads instead. In the late 1950s there was a new integrated national rail plan that was not implemented. Haifa got a six-station, one-line funicular, but Tel Aviv and Jerusalem remained bus-only. In the 1960s a skyscraper in Central Tel Aviv was built with a subway station, but there were no tunnels built; a subsequent 1971 plan was abandoned in 1973 due to the Yom Kippur War. The current subway plan dates to the 1990s, and has suffered from repeated delays, and construction only began recently, with opening expected for 2016.

Unlike in the North American debate, in Israel the left is pro-BRT and anti-rail, due to a long tradition of mistrust in mainstream (center-right to right-wing) politics. The same is true of urban planners who follow the Jacobsian tradition, such as Yoav Lerner Lerman (Heb.). The article I translated two years ago about Jerusalem’s light rail is in that tradition: it attacks genuine problems with cost overruns and a politicized route choice process, but then concludes that BRT is the solution because it’s been implemented in Curitiba and Bogota successfully. The result is that people whose ideas about trade, energy, health care, education, and housing are well to the left of what is considered acceptable in the US end up channeling the Reason Foundation on bus versus rail issues.

In reality, Tel Aviv’s urban form is quite dense. The city itself has 8,000 people per square kilometer, much lower than Paris and Barcelona, but higher than most other European central cities (say, every single German city). Like Los Angeles, its municipal borders do not conform to the informal borders of the inner-urban area, since it contains lower-density modernist neighborhoods north of the Yarkon, while dense Ramat Gan, Giv’atayim, Bnei Brak, and Bat Yam are separate municipalities. The inner ring of suburbs, including the above-named four, has 7,400 people per square kilometer; excluding the more affluent but emptier northern suburbs, this approaches 10,000/km^2.

However, the urban form is quite old, in the sense that the density is fairly constant, without the concentrations of density near nodes that typify modern transit cities. Tel Aviv’s residential high-rise construction is not very dense because it still follows the modernist paradigm of a tower in a park, leading to low lot coverage and a density that’s not much higher than that of the old four-story apartment blocks. The Old North achieves about 15,000 people per square kilometer with a floor area ratio of 2: the setbacks are such that only about half of each lot is buildable, and there are four floors per building. The Akirov Towers complex averages about 2.5.

Although this density pattern favors surface transit rather than rapid transit, Tel Aviv doesn’t have the street network for efficient surface transit. Paris, a poster child for efficient recent construction of light rail (see costs and ridership estimates on The Transport Politic), is a city of wide boulevards. Central Tel Aviv has about two such streets – Ibn Gabirol and Rothschild – and one auto-oriented arterial, Namir Road, which the subway line under construction will go under. The street network is too haphazard to leverage those two for surface BRT or light rail, and the major destinations of the central areas are often on narrower streets, for example Dizengoff. On top of that, light rail speeds in Paris are lower than 20 km/h, whereas newly built subways are much faster, approaching 40 km/h in Vancouver and Copenhagen. Outside Central Tel Aviv, the roads become wider, but not nearly as wide as those used for BRT in Bogota, and there is nothing for surface transit on those streets to connect to on the surface. A surface implementation of Route 66, following Jabotinsky Street (the eastern leg of the subway line under construction) in Ramat Gan, Bnei Brak, and Petah Tikva, wouldn’t be very fast on the surface to begin with, but would come to a crawl once crossing the freeway into Tel Aviv.

Tel Aviv also has two more important reasons to imitate Vancouver and Copenhagen, besides speed: religious politics, and economic and demographic comparability. Public transportation in Israel operates six days a week, with few exceptions, to avoid running on the Sabbath. A driverless train, built to be quiet even on elevated sections, with no turnstiles and free fares on the Sabbath, could circumvent religious opposition to seven-days-a-week operation.

Even without the religious question, Copenhagen and especially Vancouver are good models for Tel Aviv to follow, more so than middle-income Curitiba or Bogota. Israel is a high-construction cost country, but Canada is not very cheap, and Vancouver has cut construction costs by making elevated trains more palatable and reducing station lengths. Greater Tel Aviv has 2.5-3.5 million people depending on who you ask, not much higher than the range for Copenhagen and Vancouver. Tel Aviv is about as dense as Copenhagen and Vancouver, though Vancouver’s density is spikier. Tel Aviv expects fast population growth, like Vancouver, though in Tel Aviv’s case it’s a matter of high birth rates whereas in Vancouver it’s only immigration.

One way in which Vancouver is not a good model is the role of regional rail. Israel has no equivalent of Transport Canada or FRA regulations. It even connected Tel Aviv’s northern and southern rail networks and through-routes nearly all commuter and intercity trains. However, the network has real limitations, coming from its poor urban station locations, often in highway medians; the through-running project was completed simultaneously with the construction of the freeway. For example, the Tel Aviv University station is located far downhill from the actual university. As a result, even when there is development near the train stations, it is usually not walkable. This compels new rail service with stations in more central locations as well as east-west service, complementing the north-south mainline.

However, for service to the less dense suburbs, the construction of new lines, and electrification of the entire national network (so far only the Haifa commuter network is scheduled for electrification), should provide the backbone. There is no integrated planning between regional rail and shorter-distance urban rail, the first failing of the current plan.

More broadly, the plan fails not just because of the wrong mode choice – subway-surface rather than driverless metro with a regional rail complement – but also because of how it treats urban geography. The proposed network – on which the red line is under construction and the green line is intended to be the second built – is too sparse in the center, and ignores the older urban centers. The phasing ignores preexisting transportation centers, and often the choice of who to serve and how to serve them is political.

The worst political decision concerns Jaffa, the old core of the metro area. (Tel Aviv was founded as a nominally independent city, but really as a Jewish suburb of Jaffa.) The most activity is in the Old City and the Flea Market, going down along Yefet Street to Ajami, since 1948 the only majority-Arabic speaking neighborhood in the municipality, and the only neighborhood that is completely unplanned. The streets are narrow, favoring a subway, and the residents are poor and have low car ownership rates. Instead, the route through Jaffa is on the surface and follows Jerusalem Boulevard, a less busy road built by the city’s then-mayor out of envy of then-separate Tel Aviv’s Rothschild Boulevard. This serves the more gentrified Jewish parts. Ajami is gentrifying – it’s close to Central Tel Aviv, is right next to the coast, and has stunning architecture – but is still majority-Arab.

The other neighborhood that due to ethnic differences is viewed separately from Tel Aviv, Hatikva, is also underserved. In this case, the residents are Jewish, but are predominantly Mizrahi and traditional-to-religious, with high poverty levels. The plan does serve Hatikva, but much later than it should given the neighborhood’s density, intensity of low-end commercial activity, and proximity to Central Tel Aviv. A northwest-southeast line, following Dizengoff and then serving Central Bus Station (a larger transportation center still than any mainline rail station) and Hatikva before continuing east into the inner suburbs, should be a high priority, but isn’t. The Central Bus Station area is also a concentration of refugees, another low-income, low-car ownership population, though since this concentration is more recent than the plans for the subway, the lack of priority service to the bus station is not a result of racism.

It’s not only about class reasons, or racial ones: Tel Aviv had to fight to get the Ministry of Transportation to agree to build the second line underground under Ibn Gabirol, and that’s to an upper middle-class Ashkenazi neighborhoods. The common thread within the city proper is a preference for new modernist luxury towers over serving existing walkable density, even when that density is hardly lower than what the towers are providing. (The towers can be built more densely, with less open space; by the same token, the low-rise buildings could be upzoned from one half the lot and four story to three-quarters and six stories.)

Another example of bad politics is the way military bases are served. The very center of Tel Aviv is home to the Ministry of Defense and the main military headquarters, the Kirya. The inner urban area is ringed with much larger military bases, including Tsrifin to the south, Glilot to the north, and the Bakum to the east. But the officer corps is concentrated in the Kirya, while Tsrifin is a more general base, Bakum is dedicated to new draftees so that they can be told what unit they’re to be sent to, and Glilot is somewhat higher-end than Tsrifin due to its role in military intelligence but. Since draftees almost never own cars and often ride buses for hours, the three outlying bases are all natural outer anchors for lines, and Glilot and Tsrifin both lie on easy spurs from the mainline rail network. Despite this, there are no plans for regular service, while the Kirya is part of the subway line under construction and is the intersection point with the second line to be built.

Even on pure geography, the plan makes critical mistakes. The eastern leg of the line under construction is much better than its southern leg: it goes straight from the train station through Ramat Gan and Bnei Brak to a secondary anchor in Petah Tikva. And yet, the station spacing in Bnei Brak, the densest city in Israel, is the widest, even though higher density allows shorter station spacing. In contrast, the surface segment in less dense Petah Tikva is intended to have denser stop spacing. Moreover, despite the advantages subway-surface operation has in terms of branching, the branching is meant to be really a short-turn, with half of all trains going straight to the depot still in the underground section and half continuing to Petah Tikva. Central Petah Tikva is well to the south of the line, which is intended to terminate at Petah Tikva’s peripherally located central bus station, but there is no branch serving that center, despite high intended frequencies (3 minutes on the surface, 1.5 minutes underground).

I believe that in addition to an electrified mainline rail trunk, Tel Aviv needs a driverless subway network that looks roughly like an E: one or two north-south lines (west of the freeway if one, one on each side if two), three east-west lines intersecting the mainline rail at the three main Tel Aviv stations. The east-west lines should be anchored at the eastern ends at Petah Tikva, Bar Ilan University, and the Bakum or Kiryat Ono; the north-south lines should go about as far north and south as required to serve the center, letting mainline rail take care of destinations roughly from Glilot or Herzliya north and from Tsrifin south. Such a network would not serve political goals of making Tel Aviv a luxury city; it would just serve the transportation goals of the urban area’s residents.

Posted in Israel, Politics and Society, Regional Rail, Transportation, Urban Transit | 29 Comments

Quick Note: Why Quinn is Unfit to be Mayor

The Triboro RX plan calls for using preexisting freight rail rights-of-way with minimal freight traffic to build a circumferential subway line through the Bronx, Queens, and Brooklyn. It was mentioned as a possible project by then-MTA head Lee Sander and more recently by Scott Stringer and on The Atlantic Cities by Eric Jaffe. Despite not having nearly as much ridership potential as Second Avenue Subway or a future Utica subway, the presumed low cost of reactivating the right-of-way makes it a promising project.

According to Capital New York, leading mayoral contender Christine Quinn has just made up a price tag of $25 billion for Triboro, while claiming that paving portions of the right-of-way for buses will cost only $25 million. This is on the heels of city council member Brad Lander’s proposal for more investment in bus service. The difference is that Lander proposed using buses for what buses do well, that is service along city streets, and his plan includes bus lanes on major street and what appears to be systemwide off-board fare collection. In contrast, Quinn is just channeling the “buses are always cheaper than rail” mantra and proposing to expand bus service at the expense of a future subway line.

There is no support offered for either of the two cost figures Quinn is using, and plenty of contradictory evidence. Paving over rail lines for bus service is expensive; a recent example from Hartford and a proposal from Staten Island both point to about $40 million per km in the US. The map in the Capital New York article suggests significant detours away from the right-of-way, including on-street turns making the bus as slow as the existing circumferential B35 route, but also several kilometers on the railroad in Queens. Conversely, reusing rail lines for rail service is not nearly as expensive as building a subway. The MTA’s own biased study says a combined on-street and existing-right-of-way North Shore service would cost 65% more if it were light rail than if it were a busway; since the Triboro right-of-way is intact, the cost of service is in the light rail range, rather than the $25 billion for 35 km Quinn says.

But the reason Quinn is unfit for office rather than just wrong is the trust factor coming from this. She isn’t just sandbagging a project she thinks is too hard; the MTA is doing that on its own already. She appears to be brazenly making up outlandish numbers in support of a mantra about bus and rail construction costs. Nor has anyone else proposed a Triboro busway – she made the logical leap herself, despite not having any background in transit advocacy. Politicians who want to succeed need to know which advocates’ ideas to channel, and Quinn is failing at that on the transit front. If I can’t trust anything she says about transit, how can I trust anything she says about the effectiveness of stop-and-frisk, or about housing affordability, or about the consequences of labor regulations?

Update: Stephen Smith asked Quinn’s spokesperson, who cited a $21 billion figure for a far larger RPA plan including Second Avenue Subway and commuter rail through-running with new lines through Manhattan. I am not holding my breath for a retraction of the bus paving plan from the Quinn campaign.

Update 2: Quinn admitted the mistake on the rail plan, and revised the estimate of the cost down to $1 billion, but sticks to the bus plan and its $25 million estimate.

Posted in Construction Costs, Incompetence, New York, Politics and Society, Transportation, Urban Transit | 9 Comments