Express Airport Connectors are a Scourge of Public Transit

Earlier this month, Andrew Cuomo unveiled a proposal to spend $10 billion on improvements to JFK Airport, including new terminals, highway expansion, and public transit access. I encourage readers to look at the plan: the section on highways proposes $1.5-2 billion in investment including adding lanes to the Van Wyck Expressway and to on-ramps, and has the cheek to say that this will reduce fuel consumption and greenhouse gas emissions. This while the section on mass transit gives it short shrift, only proposing superficial improvements to the AirTrain; in the unlikely the case that this is built, highway mode share will grow and transit mode share will fall. Put in plainer terms, the environmental case for the plan includes fraud.

However, this is not really the topic of this post. That Andrew Cuomo lies to the voters and doesn’t care about good transportation is by now a dog-bites-man story. Instead, I want to focus a little on a throwaway line in the plan, and more on the Regional Plan Association’s reaction. The throwaway line is that almost every major world airport has a one-seat train ride to city center, and by implication, so should JFK.

As an organization dedicated to environment-friendly public transit, the RPA should have made it very clear it opposes the plan due to its low overall transportation value and its favoring of highways over transit. Instead, the RPA immediately launched a brief detailing possible new airport connectors between JFK and Manhattan. The RPA has a lot of good technical people, and its list of the pros and cons of each option is solid. It correctly notes that using the LIRR and Rockaway Beach Branch would compete for traffic with LIRR trains serving Long Island, although it doesn’t mention associated problems like low frequency. The brief is based on prior RPA proposals, but the timing, just after Cuomo came out with his announcement, suggests an endorsement. There are several intertwined problems here:

There is no no-build option

A good study for public transit should not only consider different alignments and service patterns, but also question whether the project is necessary. The US requires environmental impact statements to include a no build option; European countries require a cost-benefit analysis, and will not fund projects with a benefit/cost ratio under 1.2, because of cost escalation risk.

The RPA study does not question whether a one-seat ride from JFK to Manhattan is necessary or useful. It assumes that it is. Everything else about the study follows from that parameter. Thus, it considers entirely express plans, such as the LIRR option, alongside local options. Everything is subsumed into the question of connecting JFK to Manhattan.

One of the alignments proposed is via the LIRR Atlantic Branch and Second Avenue Subway, which the RPA has long believed should be connected. The brief says that it would be slow because it would have to make many local stops; I’ll add that it would serve Midtown, where nearly all the hotels are, via a circuitous alignment. But with all these stops on the way, shouldn’t this be considered as primarily a new trunk line connecting Eastern Brooklyn with Second Avenue? The question of whether the eastern terminus should be Jamaica or JFK must be subsumed to a study of this specific line, which at any rate is unlikely to offer faster service to JFK than the existing AirTrain-to-E option. After all, the most optimistic ridership projection for a JFK connector is maybe 40,000 users per day, whereas the projection for the full Second Avenue Subway is 500,000. I don’t think a Second Avenue-Atlantic Branch connection is warranted, but if it is, the question of whether to serve JFK at the end is secondary.

Express airport connectors are a fetish

I lived in Stockholm for two years, where I went to the airport exclusively using the Arlanda Express, a premium express link running nonstop between the airport and city center. I imagine many visitors to Stockholm use it, are satisfied, and want to replicate it in their own cities.

Unfortunately, such replications miss something important: any air-rail link must go to the areas that people are likely to want to connect to. For locals who wish to travel to the airport, this means good connections to the local transit network, since they are likely to come from many neighborhoods. Not even a small city like Stockholm worries about providing rich areas like Vasastan and Roslag with a one-seat ride. For visitors, this means a one-seat ride to where the hotels are.

Stockholm is a largely monocentric city, with one city center where everything is. (It has an edge city in Kista, with more skyscrapers than Central Stockholm, but Kista can’t be reasonably connected to the airport). The situation in other cities is more complicated. And yet, express air links prioritize serving a big train station even if it’s poorly connected to the transit network and far from the hotels. Let us consider London and Paris.

In London, the five-star hotels cluster around the West End. Only two are at Paddington Station, and only a few more are an easy walking distance from it. This is where the Heathrow Express and the slower Heathrow mainline trains go. No wonder the Heathrow Express’s mode share, as of 2004, is 9%, whereas other Heathrow connections, mainly the Piccadilly line, total 27% (source, PDF-p. 28). The Piccadilly line beautifully passes through the parts of the West End with the largest concentration of hotels, and last time I was in London, I chose it as my Heathrow connection. Nonetheless, the government chose to build the Heathrow Express.

In Paris, the five-star hotels cluster in the west of the city as well, in the 8th arrondissement. The current airport connection is via the RER B, which offers express service in the off-peak when there’s capacity, but not in the peak, when there isn’t. Even so, it is a local commuter rail service, with good connections to the city transit system, and a two-seat ride to the 8th. Because of slow perceived speeds, the state is planning to build an express connector, originally planned to open in 2015 but since delayed to 2023. The express connector will dump passengers at Gare de l’Est, with no hotels within walking distance, no access to Metro lines serving the hotel clusters (Metro 7 does so peripherally, M4 and M5 not at all), and a long walk to the RER for passengers wishing to connect to longer-range destinations such as parts of the Left Bank.

I bring this up to show that the idea of the express air-rail link is a fetish rather than a transportation project, and by analogy, so is the one-seat ride. There is value in faster service and in minimizing the number of transfers, but express airport connectors attempt both even at the cost of building a line that doesn’t go where people want to go.

Ultimately, Cuomo doesn’t care about good transit

Cuomo has many concerns. The chief one is most likely winning the 2020 presidential primary. He has been running for president since the moment he was elected, and many of his policies – gay marriage, the feuds with Bill de Blasio, the desperate attempt to build shiny infrastructure with his name on it – are best viewed through that lens. To the extent that he is not running for president, he has attempted to cement absolute power within the state. He backed a palace coup in the State Senate that secured a Republican(-ish) majority even though the Democrats won most seats; a Democratic majority would be led by a different faction of the party, one more beholden to Democratic interest groups, and might send Cuomo bills that he would lose political capital if he either signed or vetoed them.

This is why I keep giving him as an example of an autocrat in various posts; here is the major takedown, but see also here. Autocrats are always bad for the areas that they govern, which as two separate implications. The first is that their choice of spending priorities is compromised by the need to expand their own power and glory: even if you believe that New York needs $1.5-2 billion in new highway spending, is the Van Wyck really the best place for it?

The second and worse implication is that it is hard for outside groups to convince autocrats to do better. Autocrats don’t have to listen; if they did, they would be democratic leaders. Cuomo happens to be an anti-transit autocrat, and this means that pro-transit groups in New York need to view him as an obstacle and work to weaken him, rather than to ask him to please consider their plans for an air-rail link.

The difficulty is that, precisely because local- and state-level democracy in the US is so weak, it is difficult for issue-oriented groups to go out and oppose the governor. Planners in Democratic cities are hesitant to attack budget-cutting Republican governors like Charlie Baker and Larry Hogan; attacking Democratic governors like Cuomo is a nonstarter. Nonetheless, the RPA needs to understand that it needs to oppose governments hostile to public transit rather than ask them to improve. When Cuomo proposes a bad transportation project, say “no” and move on to more important things; don’t try to work with him, because nothing good can come of that.

Boston NightBus: Planning Around Timed Connections

Over the last year, several people at the Boston advocacy group TransitMatters have been working on a plan to restore night bus service in the area, which is one of few big US cities with no transit between 1 and 5 am. See here for the original concept, from March of last year. The TransitMatters plan assumes limited financial resources, designing the plan around eight or nine routes, all running on an hourly takt schedule, meeting at one central location for a pulse, currently planned to be Copley Square. This seems fairly standard: in Vancouver, too, the daytime bus grid is replaced with a pulse-based system at night, with 30-minute headways on most lines.

So far, so good. The problem is that after additional work, including checking travel times on Google Maps but also some nighttime test drives, TransitMatters found that the original map would not work with an hourly takt. Hourly service with one vehicle per route requires one-way travel time to be 30 minutes minus turnaround time. Double-length routes, at one hour minus turnaround times, can also fit into the system, with two vehicles, but nothing in Boston is that long. Several of the routes turn out to be just a hair too long, and the plan evolved into one with 75-minute headways, too long and irregular for customers. In meetings with stakeholders, the relevant members of Transit Matters were told as much, that 75 minutes was too low a frequency.

I started doing work on this plan around then. Since I think a clockface schedule is important – especially if there’s money for more buses, because then the headways would be 30 minutes and not an awkward 37.5 minutes – I started to sketch ideas for how to reduce travel time. The revisions center the schedule, fitting route choices around the need for buses to complete the roundtrip in an hour minus two turnaround times; this is what I came up with. Time is saved by avoiding detours, even to relatively major destinations, and by not going as far as would be ideal if there were no need to maintain the takt. Many of the design principles are generally useful for designing takt-based schedules, including for commuter rail and for rail-bus connections.

Schedule padding should be based on expected punctuality

This is a point I’ve made before in talking about LIRR scheduling, where fragile timetabling contributes to high schedule padding. Overall, punctuality depends on the following possible attributes of transit services:

  • Rail is more punctual than buses, and electric service is more punctual than breakdown-prone diesels.
  • Grade-separated transit is more punctual than surface transit.
  • Services are more punctual when there are fewer riders, especially buses, which only stop when riders request it.
  • Surface transit is more punctual if it has dedicated lanes, or if (as on some Vancouver routes) it runs on a street with signal priority over intersecting traffic.
  • Surface transit is more punctual off-peak, especially at night, when there’s no congestion.
  • Transit service is more punctual the shorter the span is: a system that’s only supposed to run for 5 night hours has less room for schedule slips than one that’s supposed to run for 21 daytime hours. (This I credit to Ant6n.)

While NightBus involves surface buses running in shared traffic lanes using on-board fare collection, the expected traffic is so low that travel time is likely to be close to the travel time depicted on Google Maps without traffic, and significant variations are unlikely. This means it’s possible to get away with less schedule padding, even though the plan requires 8 routes to converge at one pulse point. The maximum one-way travel time should be taken to be around 26 minutes. 24 minutes is better, and ideally not all routes should be 26 (they’d wait for one another at the pulse point, so it matters how many routes are near the maximum and not just what the maximum is).

Routes should run as fast as necessary and as far as possible

Sometimes, the optimal routing is already the fastest – for example, maybe it really is optimal to link two nodes with a nonstop route. Usually, it is not: on rapid transit there are intermediate stops, on surface transit there are detours and slower segments when freeways are available. When the schedule is tight, there is a plethora of tradeoffs that must be made about travel time. A detour to a major destination, so important that in isolation it would improve service despite the slowdown for through-passengers, must be weighed against other detours. On fast commuter rail line, where there is a significant stop penalty, the equivalent is the intermediate stop; I discussed this 5 years ago in the context of the Lowell Line. The overall length of the route is also a variable: when possible, the outer end should be as far as possible while maintaining the takt.

In the context of NightBus, I used this rule for all routes:

  • The N17, running parallel to the Red Line to Ashmont, runs straight on Dorchester Avenue, whereas in the original plan it detoured to serve Kane Square; there is no time to detour to Kane Square, so in the revised plan it skips it, and passengers going there would need to walk 500 meters.
  • The N28, running on Washington Street and Blue Hill Avenue, terminates at the future Blue Hill Avenue commuter rail stop, and not the Mattapan trolley stop. At night the trolleys don’t run, so the connection isn’t important, and the few hundred meters cut from the route give the buses 2 crucial minutes with which to make the 26-minute one-way schedule.
  • The N32/39 cannot go on Huntington (N39) and thence to Hyde Park (N32); it can either go on Huntington to less valuable Roslindale or on a route parallel to the Orange Line to Hyde Park. I believe the latter option is better, but this is up for debate.
  • The N57 follows the Green Line B Branch to Boston College (taking 20 minutes), not the 57 into Watertown (which would take about 27); I think this is also the optimal decision independently of the need to make the pulse, but the pulse makes it far better. Note that this means the route would have to use unmarked bus stops, since in the daytime there is no bus paralleling the B Branch.
  • The N1 terminates at Davis Square, without going farther into Cambridge or into Arlington (as N77).
  • The N82 and N110 use Storrow Drive to skip Downtown Boston’s slow streets. The buses run on a pulse, so there is no need for more than one bus to serve the same route – they’d be scheduled to bunch, rather than overlying to provide higher frequency. The N111 to East Boston, Chelsea, and Revere serves Downtown Boston instead. This cuts service from Downtown to Malden and Medford, but Downtown is a 9-5 neighborhood, so there’s less need to connect it in every direction at night.
  • The N111 terminates in central Revere and not in North Revere.

Not all transit services are meant for all social classes

At night, buses go at approximately the same speed as cars, provided cars can’t take freeways. If the cars are carrying multiple passengers, as ride-sharing counterproposals plan to, then they probably can’t take freeways. In theory, this means buses would be for everyone, since they were as fast as taxis. In practice, this is only true for people using one route – diagonal trips are still faster by taxi. But worst, the hourly frequency is brutal. People who can plan their night travel around the schedule would use the bus; so would people who can’t afford taxis. But people in the top two-thirds of the income distribution are unlikely to use NightBus, or any ride-sharing alternative (if ride-sharing can afford more vehicles for higher frequency, so can buses).

What this means is that the service needs to be designed around the needs of low-income riders. As a note of caution, in popular parlance there’s a tendency to conflate low-income riders with other groups, such as elderly riders, and pit their needs against good transit practices like wider stop spacing, off-board fare collection, frequent grids, and so on. Those practices are applicable to everyone, and if they appear to favor middle-class riders, it’s because when the buses are too slow, the middle class drives and the poor keep taking the bus, so faster buses have higher proportions of richer riders.

With that caveat in mind, what I mean when I talk about low-income riders is the distribution of origins and destinations. The various draft plans proposed by Transit Matters members all focused on serving lower-income neighborhoods. This is why it’s not such a problem that the N1 only goes as far as Davis Square: that is the favored quarter of the Boston area, and the areas cut off from service, such as Arlington, are rich enough that few would ride an hourly or even half-hourly bus. Additional decisions made based on this principle include,

  • The N32/N39 route serves Hyde Park and not Roslindale. At equal incomes, I’d probably suggest serving Roslindale, which makes for a shorter route, and allows the route to use the extra time gained to get to Forest Hills via a longer route on Huntington and pass near Longwood. But incomes are not equal: Roxbury is much poorer than Longwood and Jamaica Plain, and Hyde Park is poorer than Roslindale.
  • The N57 serves Boston College, which is middle-income but still poorer than Watertown.
  • The N111 serves Chelsea, and probably would regardless of average incomes, but it could instead go parallel to the Blue Line, serving somewhat less poor and less dense areas.

The schedule’s importance is higher at lower frequency

None of the above principles really matters to a subway with 2-minute peak headways and 4-minute off-peak headways. Some of these subways don’t even run on a fixed schedule: it’s more important to maintain even headways than to have trains come when the nominal schedule says they will.  The point where clockface scheduling starts to become important seems contentious among transit planners. Swiss planners use clockface schedules down to (at highest) 7.5-minute headways, and say that 11-minute headways are a recipe for low ridership. In Vienna and Berlin, timed transfers are offered on the U-Bahn on 5-minute trains. At the opposite end, hourly and even half-hourly services must be designed around a schedule with quick connections, to prevent passengers from having to wait the full headway.

In borderline cases – the 7.5-15 minute range – transfers can be timed, and at the less frequent end some overtakes, but there is no real need to design the rest of the schedule around the headway. The main reason to operate with tight turnarounds is to reduce fleet and crew requirements. Any looseness in the schedule, beyond the minimum required for punctuality and crew comfort, should be thought of as a waste. However, the waste is capped by the overall headway. Concretely, if your favorite transit route takes 31 minutes one-way after factoring in turnaround time and schedule padding, then it needs 2 vehicles to provide hourly service, lying idle half the time; to provide 10-minute service, it needs 7 vehicles, lying idle only 11% of the time. So if frequency is high enough, the route should be designed without regard to turnaround times, because the effect is reduced.

But NightBus is hourly; 30-minute service is aspirational. This means that the schedule is more important than anything else. Even if a single neighborhood feels genuinely screwed over by the decisions made to keep the routes at or under 26 minutes – for example, if Revere and Mattapan prefer service going farther out even at the cost of 70- or 75-minute frequency – good transit activists must think in systemwide terms. Maintaining the hourly takt throughout the service area is more important than North Revere and the last few hundred meters in Mattapan.

Ultimately, buses and trains are not all that different

There are major differences between buses and trains in capital costs, operating costs, reliability, and so on, leading to familiar tradeoffs. Even at medium-size transit systems such as the MBTA, frequent bus networks are convoluted and at times fully gridded, while rapid transit networks are invariably radial at least to some extent,. Buses also can’t consistently use timed transfers at high frequency.

However, there are many similarities, especially with small bus networks, which are designed around a pulse rather than a grid:

  • Public transit works with transfers and central dispatching. This makes it better at pulse-based network than any taxi (including ride-hailing apps) or ride-sharing service.
  • Vehicles are large – not to the same extent of course, but relatively speaking (trains in large cities, buses in small ones or at night). There’s less room for the everywhere-to-everywhere one-seat rides that taxis provide at higher cost. If there’s budget for more service-hours, it’s spent on higher frequency or longer routes and not on adding more one-seat rides.
  • Routes are centrally planned, with decisions made about one area affecting service in other areas. It is not possible for routes to evolve by private spontaneous action except in the thickest markets, far bigger than what small bus networks can support.
  • The importance of the schedule and of timed transfers is proportional to the headway, and inversely proportional to frequency.

This is good news, because it means that the large body of good industry practices for rail planning, inherited from such countries as Switzerland and Japan, can be adapted for buses, and vice versa. I did not invent the principle of running trains as fast as necessary; it’s a Swiss planning principle, which led the country to invest in rail just enough to enable trains to go between Zurich, Basel, and Bern in one hour minus turnaround and transfer time. Nor did I expect, when I started getting involved in Transit Matters, that this would be so helpful in designing a better bus plan.

Second Avenue Subway Phase 2 to Cost $6 Billion

Since the 2015-9 capital plan, the New York MTA had been including the second phase of Second Avenue Subway in its capital plan, without a clear estimate of its projected cost. The rumors said the cost would be about $5 billion. A new media story finally gives an official cost estimate: $6 billion. The total length of the project, from 96th Street and 2nd Avenue to 125th Street and Lexington, is about 2.7 km. At $2.2 billion per km, this sets a new world record for subway construction costs, breaking that of the first phase of the same line, which only cost $1.7 billion per km. See a compendium of past posts here to look how these projects stack up. For people not interested in combing through multiple old posts of mine, the short version is that outside the Anglosphere, subway tunnels typically cost $100-300 million per km, with outliers in both directions, but even inside the Anglosphere, costs are in the mid-to-high hundreds of million per km.

In some way, the high cost of SAS phase 2 is more frustrating than that of phase 1. This is because 1 km of the 2.7 km of route preexists. SAS construction began in the 1970s, but was halted due to New York’s financial crisis. In East Harlem, some actual tunnel segments were dug, roughly between the proposed station locations at 96th, 106th, 116th, and 125th Streets; Wikipedia has a more detailed list. Construction of phase 2 thus involves just the stations, plus a short bored segment under 125th Street to get from Second Avenue to Lexington, for a connection to the 4, 5, and 6 trains.

Not having to build tunnels between the stations is beneficial, not as a cost saver in itself but as a way to reduce station costs. In phase 1, it appears that most costs were associated with the stations themselves; if I remember correctly, the cost breakdown was 25% for each of three new stations, and 25% for the tunnels in between. The reason is that the stations are quite deep, while the tunneling in between is bored, to reduce surface disruption. Deep stations are more expensive because they require more excavation, while tunnel boring costs depend more on soil type and how much infrastructure is in the way than on depth. Counting the extra expense of stations, bored subways cost more per km than cut-and-cover subways, but create less surface disruption away from station sites, which is why this method was chosen for phase 1. In contrast, in phase 2, most construction is stations, which would favor a shallow cut-and-cover solution.

Unfortunately, according to rumors, it appears that the MTA now judges it impossible to use the preexisting tunnels in phase 2. If this is true, then this would explain the higher cost (though it would justify $400 million per km, not $2.2 billion): they’d have to build underneath those tunnels. But if this is true then it suggests severe incompetence in the planning stage, of the kind that should get senior employees fired and consultants blacklisted.

The reason is that Second Avenue Subway was planned as a single line. The Environmental Impact Statement was for the full line, including the proposed construction techniques. The phasing was agreed on by then; there was only enough state money for phase 1. This isn’t an unexpected change of plans. I’d understand if in the 2000s it was found that tunnels from the 1970s were not usable; this happened further south, in phase 4, where a preexisting tunnel under Chrystie Street was found to be difficult to use. But in the 2000s the SAS studies signed off on using the tunnels in Harlem, and what seems to be happening is that phase 1, built according to the specifications of the same study, is too deep for using the tunnels.

At $6 billion, this line shouldn’t be built. I know that it goes to a low-income, underserved neighborhood, one that I’ve attacked New York before for taking years to equip with bike lanes (scroll down to my comments here). But the ridership projection is 100,000 per weekday, and $60,000 per weekday rider is too much. Phase 1, providing an underrated east-west connection and serving a denser neighborhood, is projected to get 200,000, for a projection of around $25,000 per weekday rider, which isn’t terrible, so it’s a justified project even if the costs could be an order of magnitude lower.

Were costs lower, it would be possible to build subways to many more low-income neighborhoods in New York. A 125th Street crosstown line, extending phase 2 of SAS, would provide Harlem with crucial east-west connectivity. Subways under Nostrand and Utica Avenues would serve a mixture of working- and middle-class neighborhoods in Brooklyn. A subway under Northern Boulevard in Queens, connecting to phases 3 and 4 of SAS, would serve one of the poorest parts of Queens. A network of tramways would improve surface transit in the South Bronx. Triboro Line would connect poor areas like the South Bronx and East New York with richer ones like Astoria. New York could achieve a lot, especially for its most vulnerable residents, if it could construct subways affordably.

But in a world in which subways cost $60,000 per weekday rider and $2.2 billion per km, New York cannot extend the subway. If it has money in its budget for investment, it should look into things other than transportation, such as social housing or schools. Or it could not borrow money at all to pay for big projects, and in lieu of the money spent on interest, reduce taxes, or increase ongoing social spending.

Given persistent high costs, I would recommend shelving SAS and future rail extensions in New York, including the Gateway tunnel, until costs can be drastically cut. There’s no shortage of worthy priorities for scarce budget in New York, both city and state. Health care in the US is too expensive by a factor of 2, not 10, and transfer payments have near-100% efficiency no matter what; it’s possible to exhaust the tax capability of a state or city just on these two items. Perhaps the need to compete with other budget priorities would get the MTA to cut waste.

Scope Creep is the New Black

In 2009, studies began for a replacement of the Baltimore and Potomac (B&P) Tunnel. This tunnel, located immediately west of Baltimore Penn Station, has sharp curves, limiting passenger trains to about 50 km/h today. The plan was a two-track passenger rail tunnel, called the Great Circle Tunnel since it would sweep a wide circular arc; see yellow line here. It would be about 3 kilometers and cost $750 million, on the high side for a tunnel with no stations, but nothing to get too outraged about. Since then, costs have mounted. In 2014, the plan, still for two tracks, was up to $1 billion to $1.5 billion. Since then, costs have exploded, and the new Final Environmental Impact Statement puts the project at $4 billion. This is worth getting outraged about; at this cost, even at half this cost, the tunnel should not be built. However, unlike in some other cases of high construction costs that I have criticized, here the problem is not high unit costs, but pure scope creep. The new scope should be deleted in order to reduce costs; as I will explain, the required capacity is well within the capability of two tracks.

First, some background, summarized from the original report from 2009, which I can no longer find: Baltimore was a bottleneck of US rail transportation in the mid-19th century. In the Civil War, there was no route through the city; Union troops had to lug supplies across the city, fighting off mobs of Confederate sympathizers. This in turn is because Baltimore’s terrain is quite hilly, with no coastal plain to speak of: the only flat land on which a railroad could be easily built was already developed and urbanized by the time the railroad was invented. It took until the 1870s to build routes across the city, by which time the US already had a transcontinental railroad. Moreover, intense competition between the Pennsylvania Railroad (PRR) and the Baltimore and Ohio (B&O) ensured that each company would built its own tunnel. The two-track B&P is the PRR tunnel; there’s also a single-track freight tunnel, originally built by the B&O, now owned by CSX, into which the B&O later merged.

Because of the duplication of routes and the difficult geography, the tunnels were not built to high standards. The ruling grade on the B&P is higher than freight railroads would like, 1.34% uphill departing the station, the steepest on the Northeast Corridor (NEC) south of Philadelphia. This grade also reduces initial acceleration for passenger trains. The tunnel also has multiple sharp curves, with the curve at the western portal limiting trains today to 30 mph (about 50 km/h). The CSX tunnel, called Howard Street Tunnel, has a grade as well. The B&P maintenance costs are high due to poor construction, but a shutdown for repairs is not possible as it is a key NEC link with no possible reroute.

In 2009, the FRA’s plan was to bypass the B&P Tunnel with a two-track passenger rail tunnel, the Great Circle Tunnel. The tunnel would be a little longer than the B&P, but permit much higher speeds, around 160 km/h, saving Acela trains around 1.5 minutes. Actually the impact would be even higher, since near-terminal speed limits are a worse constraint for trains with higher initial acceleration; for high-performance trains, the saving is about 2-2.5 minutes. No accommodation was made for freight in the original plan: CSX indicated lack of interest in a joint passenger and freight rail tunnel. Besides, the NEC’s loading gauge is incompatible with double-stacked freight; accommodating such trains would require many small infrastructure upgrades, raising bridges, in addition to building a new tunnel.

In contrast, the new plan accommodates freight. Thus, the plan is for four tracks, all built to support double-stacked freight. This is despite the fact that there is no service plan that requires such capacity. Nor can the rest of the NEC support double-stacked freight easily. Of note, Amtrak only plans on using this tunnel under scenarios of what it considers low or intermediate investment into high-speed rail. Under the high-investment scenario, the so-called Alternative 3 of NEC Future, the plan is to build a two-track tunnel under Downtown Baltimore, dedicated to high-speed trains. Thus, the ultimate plan is really for six tracks.

Moreover, as pointed out by Elizabeth Alexis of CARRD, a Californian advocacy group that has criticized California’s own high-speed rail cost overruns, the new tunnel is planned to accommodate diesel trains. This is because since 2009, the commuter rail line connecting Baltimore and Washington on the NEC, called the MARC Penn Line, has deelectrified. The route is entirely electrified, and MARC used to run electric trains on it. However, in the last few years MARC deelectrified. There are conflicting rumors as to why: MARC used the pool of Amtrak electric locomotives, and Amtrak is stopping maintaining them as it is getting new locomotives; Amtrak is overcharging MARC on electricity; MARC wants fleet compatibility with its two other lines, which are unelectrified (although the Penn Line has more ridership than both other lines combined). No matter what, MARC should immediately reverse course and buy new electric trains to use on the Penn Line.

Freight trains are more complicated – all US freight trains are dieselized, even under catenary, because of a combination of unelectrified yards and Amtrak’s overcharging on electric rates. However, if freight through the Great Circle Tunnel is desired, Amtrak should work with Norfolk Southern on setting up an electric district, or else Norfolk Southern should negotiate trackage rights on CSX’s existing tunnel. If more freight capacity is desired, private companies NS and CSX can spend their own money on freight tunnels.

In contrast, a realistic scenario would ignore freight entirely, and put intercity and regional trains in the same two-track tunnel. The maximum capacity of a two-track high-speed rail line is 12 trains per hour. Near Baltimore Penn the line would not be high-speed, so capacity is defined by the limit of a normal line, which is about 24 tph. If there is a service plan under which the MARC Penn Line could get more than 12 tph at the peak, I have not seen it. The plans I have seen call for 4 peak tph and 2 off-peak tph. There is a throwaway line about “transit-like” service on page 17, but it’s not clear what is meant in terms of frequency.

Regardless of what the state of Maryland thinks MARC could support, 12 peak regional tph through Baltimore is not a reasonable assumption in any scenario in which cars remain legal. The tunnels are not planned to have any stations, so the only city station west of Baltimore Penn is West Baltimore. Baltimore is not a very dense city, nor is West Baltimore, most famous for being the location of The Wire, a hot location for transit-oriented development. Most of Baltimore’s suburbs on the Penn Line are very low-density. In any scenario in which high-speed rail actually fills 12 tph, many would be long-range commuters, which means people who live in Baltimore and work in Washington would be commuting on high-speed trains and not on regional trains. About the upper limit of what I can see for the Penn Line in a realistic scenario is 6 tph peak, 3-4 tph off-peak.

Moreover, there is no real need to separate high-speed and regional trains for reasons of speed. High-speed trains take time to accelerate from a stop at Baltimore: by the portal, even high-acceleration sets could not go much faster than 200 km/h. An in-tunnel speed limit in the 160-180 km/h area only slows down high-speed trains by a few seconds. Nor does it lead to any noticeable speed difference with electrified regional trains, which would reduce capacity: modern regional trains like the FLIRT accelerate to 160 km/h as fast as the fastest-accelerating high-speed train, the N700-I, both having an acceleration penalty of about 25 seconds.

The upshot is that there is no need for any of the new scope added since 2009. There is no need for four tracks; two will suffice. There is no need to design for double-stacked freight; the rest of the line only accommodates single-stacked freight, and the NEC has little freight traffic anyway. Under no circumstances should diesel passenger trains be allowed under the catenary, not when the Penn Line is entirely electrified.

The new tunnel has no reason to cost $4 billion. Slashing the number of tunnels from four to two should halve the cost, and reducing the tunnels’ size and ventilation needs should substantially reduce cost as well. With the potential time gained by intercity and regional trains and the reduced maintenance cost, the original budget of $750 million is acceptable, and even slightly higher costs can be justified. However, again because the existing two-track capacity can accommodate any passenger rail volume that can be reasonably expected, the new tunnel is not a must-have. $4 billion is too high a cost, and good transit activists should reject the current plan.

Excuses for High Construction Costs

I have written many posts about international differences in subway construction costs. They’ve gotten a lot of media attention, percolating even to politicians and to a team of academics. Against this positive attention, there have been criticisms. Three come to mind: the numbers are incorrect, costs do not matter, and the comparisons are apples-and-oranges. The first criticism depends entirely on whether one disbelieves figures given in high-quality trade publications, government websites, and mass media. The second criticism I addressed at the beginning of the year, comparing the extent of subway construction in Sweden and the US. Today, after hearing people invoke the third criticism on social media to defend Ed Glaeser’s remark that it’s possible to cut US construction costs by 10% but not 75%, I want to explain why the comparisons I make do in fact involve similar projects. Some of the specific criticisms that I’m comparing apples and oranges are pure excuses, borne out of ignorance of how difficult certain peer subway tunneling projects have been.

First, let us go back to my first post on the subject: I was comparing New York, where I was living at the time, with Tokyo, Seoul, Singapore, London, Paris, Berlin, Amsterdam, Copenhagen, Zurich, Madrid, Milan, Barcelona, and Naples – all well-known global cities. Going even farther back, before I started this blog in 2011, I first saw the difference between New York and Tokyo in 2008 or 2009, and then looked up figures for London, Paris, and Berlin in late 2009. I was focusing on infill projects in the biggest cities in the first world, specifically to preempt claims that New York is inherently more expensive because it’s bigger and richer than (say) Prague. Until I started looking at third-world construction costs, I thought they’d be lower; see for example what I wrote on the subject in 2009 here.

I bring this history up to point out that at first, I was exceptionally careful to pick projects that would pass any exceptionalist criticism portraying New York or the US in general as harder to build in. With a more complete dataset, it’s possible to rebut most of the big criticisms one could make under the apples-and-oranges umbrella.

Labor Costs

Labor costs are of course high in New York, but also in many of the other cities on my list. The best comparable sources I can find for income in the US and Europe cite income from work (or total income net of rent and interest): see here for US data and look under “net earnings,” and here for EU data. Ile-de-France is about as rich as metro New York, and London and Stockholm are only slightly poorer, all after PPP adjustment.

Moreover, within countries, there’s no obvious relationship between income and construction costs. The US is somewhat of an exception – Los Angeles appears to have the cheapest subways, and is also the poorest of the major cities – but elsewhere, this effect is muted or even reversed. The factor-of-2 difference in income between Lombardy and Campania has not led to any construction cost difference between Milan and Naples. In France, a comparative analysis of tramway costs, showing some but not all lines, fails to find significant differences between Paris and many provincial cities, with far lower regional incomes; moreover, this list omits Lyon, the richest provincial city, where the line for which I can find reliable cost data would be squarely in the middle of the national list in cost per km.

Finally, between countries, the correlation between construction cost and wealth seems weak when one excludes the US. My analysis of this is a subjective impression from looking at many case studies; David Schleicher and Tracy Gordon, formally analyzing a dataset with a large overlap with mine, find a positive but weak correlation. PPP-adjusted costs tend to be much more consistent across countries of varying income levels than GDP-adjusted costs; the latter statistic would exhibit a vast gap between the construction costs of much of Europe and those of high-cost poor countries like India and Bangladesh, the former statistic would show them to be not too different.

What is true is that New York specifically seems to have labor regulations that reduce productivity. Little of this is in citable, reputable sources, but comes from quotes given to me from people involved in the industry. One example given by Michael Horodniceanu, president of MTA Capital Construction, is of a certain task involving tunnel-boring machines, which is done by 9 people in Madrid and 24 in New York. However, there’s a chasm between the claim that the US is more expensive because it pays first-world wages and the claim that there are specific labor regulations in the US in general or New York in particular that raise construction costs. The latter claim is if anything optimistic, since it suggests it is possible to improve labor productivity with rule changes and automation.

Land Costs and NIMBYs

People whose only experience with major infrastructure projects outside the US is reading about China think that the US has a NIMBY-prone process, driving up land acquisition costs. Too many proponents of high-speed rail think that it should go in freeway medians to save on such costs; Hyperloop proponents even claim that the proposed system’s fully elevated nature is a plus since it reduces land footprint. The reality is the exact opposite.

In Japan, as Walter Hook explains in a Transportation Research Board paper from 1994, urban landowners enjoy strong property rights protections. This drives up the cost of construction: land acquisition is 75-80% of highway construction cost in Japan, compared with 25% in the US; for rail, both sets of numbers are lower, as it requires narrower rights-of-way than highways. In Japan, acquiring buildings for eminent domain is also quite difficult, unlike in the US. Tokyo is toward the upper end of rail construction costs outside the Anglosphere, and the smaller cities in Japan seem to be at best in the middle, whereas the Shinkansen’s construction cost seems relatively low for how much tunneling is required.

In the last twenty years, land prices have increased in the US cities that build the most subways, including New York, San Francisco, and Los Angeles. However, Second Avenue Subway had few demolitions, for ventilation rather than carving a right-of-way. New York and other North American cities benefit from having wide arterial streets to dig subways under; such streets aren’t always available in Europe and Japan.

Urban Density

Manhattan is dense. Thus one of the excuses for high construction costs is that there’s more development near under-construction subway routes than in other cities. I say excuse and not reason, because this explanation misses three key facts:

1. While New York is very dense, there exist other cities that are about equally dense. Paris has the same residential density as Manhattan, both around 26,000 people per km^2. The wards of Tokyo where infill subways are built are less dense, but not by much: Toshima, Shinjuku, and Shibuya, where the Fukutoshin Line passes, are collectively at 18,500/km^2. Athens proper has about 17,000/km^2, and most of the under-construction Line 4 is in the city proper, not the suburbs. Barcelona has 16,000/km^2. Paris, Athens, and Barcelona do not appear to have much higher construction costs than lower-density Continental cities like the cities of Germany or Scandinavia.

2. Suburban subway extensions in the US are quite expensive as well. The projected cost of BART to San Jose is around $500 million per underground km; Boston’s Green Line Extension, in a trench next to a mainline railroad, is currently around $400 million, so expensive it was mistakenly classified as a subway in a Spanish analysis (PDF p. 34) even before the latest cost overrun; Washington’s Silver Line, predominantly in a suburban freeway median, with little tunneling, is around $180 million per km. It is to be expected that a suburban subway, let alone a suburban light rail line, should be cheaper than city-center infill; what is not to be expected is that an American suburban light rail line should cost more than most infill subways in Europe.

3. Density by itself does not raise construction costs, except through its effects on the built form and on land costs. Land costs, as described in the previous section, are not a major factor in US construction costs. Built form is, but Second Avenue Subway passes under a wide arterial street, limiting not only takings but also the quantity of older infrastructure to cross. Tunnels that cross under entire older subway networks, such as Tokyo’s Fukutoshin and Oedo Lines, Paris Metro Line 14 and the extension of the RER E to the west, Barcelona Lines 9 and 10, and London’s Crossrail and Jubilee Line Extension, naturally have higher construction costs; in some cases, it required careful design to thread these lines between older tunnels, with only a few centimeters’ worth of clearance. The 7 extension has no more difficult construction than those lines, and Second Avenue Subway is if anything easier. Even the future phase 3, crossing many east-west subways in Midtown, mostly involves overcrossings, as those east-west subways are quite deep at Second Avenue to go under the East River.

General Construction Difficulties

People who defend New York’s high construction costs as reasonable or necessary like to point out geological difficulties; I recall seeing a few years ago a reference to an archeological site in Harlem as evidence that New York has unique difficulties. As with the other excuses, these problems are far less unique than New Yorkers think, and in this case, New York is actually much easier than certain other cases.

The point here is that the presence of urban archeology is indeed a massive cost raiser. In cities with significant preindustrial cores, lines passing through old sites have had to be built delicately to avoid destroying artifacts. For examples, consider Marmaray in Istanbul, Rome Metro Line C, and multiple lines in Athens and Mexico City. While Turkish construction costs are generally low, Marmaray was about $400 million per km, and a project manager overseeing construction said, “I can’t think of any challenge this project lacks.” Rome Metro Line C has been plagued with delays and is around twice as expensive per km as recent lines in Milan and Naples. In Paris, Metro 14 ran into medieval mines at its southern extremity during construction, leading to a cave-in at a kindergarten; a suburban extension of Metro 4 required some work on the mines as well.

Such artifacts exist in New York, but generally only at its southern end, which was settled first. The Upper East Side urbanized in the late 19th century. It does not have the layers of fragile artifacts that cities that were already large in the Middle Ages were, let alone cities from Antiquity like Rome and Byzantium.

Against this, there is the real fact that Manhattan’s rock is schist, which is hard to tunnel through since its quality is inconsistent (see e.g. brief explanation in a New York Times article from 2012). The rock itself is not too different from the granite and gneiss of Stockholm, but is at times more brittle, requiring more reinforcement; contrary to what appears to be popular belief, the problem isn’t that schist is hard (gneiss is even harder), but that it is at times brittle. That said, by the standards of medieval Parisian mines and Roman ruins, this does not seem like an unusual imposition. What’s more, phase 2 of Second Avenue Subway appears to be in Inwood marble rather than Manhattan schist, and yet the projected construction costs per km appear to be even higher; the rumors I have seen on social media peg it at $5 billion for about 2.7 km, of which about 1 km preexists.

There is Always an Excuse

The sharp-eyed reader will notice that with the possible exception of Paris Metro 14, the projects I am positively comparing to American subways are only discussed in one or two of the four above items – labor costs, land costs, density, and geology and archeology. It’s always possible to excuse a particular high-cost line by finding some item on which it differs from other lines. There aren’t a lot of subway lines under construction in the world right now, complicating any attempt at a large-N study. David Schleicher and Tracy Gordon have looked at a few possible correlates, including GDP per capita, corruption perception, and whether the country uses English common law, but there aren’t enough datapoints for a robust multivariate analysis, only for univariate analyses one correlate at a time.

Were the cost difference smaller, I might even be inclined to believe these excuses. Perhaps New York really does have a unique combination of high density, high wages, difficult rock, and so on. If Second Avenue Subway cost $500 million per km, and if above-ground rail lines elsewhere in the US cost like above-ground rail lines in the rest of the developed world, I would at most hesitantly suggest that there might be a problem in forums with plenty of experts who could give plausible explanations. But the actual cost of subways in New York is $1.5 billion per km, and proposed future lines go even higher; meanwhile, multiple at-grade and elevated US lines cost 5-10 times as high as European counterparts. That New York specifically has a factor-of-10 difference with cities that share most of its construction difficulties suggests that there really is a large problem of waste.

New Yorkers tend to think that New York is special. This is not true of the denizens of every city, though London and Paris both seem to share New York’s pathology. The result is that many New Yorkers tend to discount such cross-city comparisons; who am I to put New York on the same list as lesser cities like Stockholm and Barcelona? I was affected by this mentality enough to begin my comparisons with the few cities New York could not denigrate so well. But with further investigation of what makes some subway tunnels more difficult than others, we can dispense with this chauvinism and directly discuss commonalities and differences between various cities. That is, those of us who care about good transit can have this discussion; the rest can keep their excuses.

Hyperloop Freight is a Joke

As the ongoing attempt to build a Hyperloop tube in California is crashing due to entirely foreseen technical problems, the company trying to raise capital for the project, Hyperloop One, is looking at other possibilities in order to save face. A few come from other passenger routes: Stockholm-Helsinki is one option, and another is the Dubai-Abu Dhabi, which looks like it may happen thanks to the regime’s indifference to financial prudence. Those plans aren’t any better or worse than the original idea to build it in California. But as part of their refusal to admit failure, the planners are trying to branch into express freight service. Hyperloop freight is especially egregious, in a way that’s interesting not only as a way of pointing out that tech entrepreneurs don’t always know what they’re doing, but also because of its implications for freight service on conventional high-speed rail.

First, let’s go back to my most quoted line on Hyperloop. In 2013 I called it a barf ride, because the plan would subject passengers to high acceleration forces, about 5 m/s^2 (conventional rail tops at 1.5 m/s^2, and a plane takes off at 3-4 m/s^2). This is actually worse for freight than for passengers, which is why the speed limits on curves are lower for freight trains than for passenger trains: as always, see Martin Lindahl’s thesis for relevant European standards. Freight does not barf, but it does shift, potentially dangerously; air freight is packed tightly in small pellets. Existing freight trains are also almost invariably heavier than passenger trains, and the heavier axle loads make high cant deficiency more difficult, as the added weight pounds the outer rail.

Another potential problem is cant. Normally, canting the tracks provides free sideways acceleration: provided the cant can be maintained, no component of the train or tracks feels the extra force. Cant deficiency, in contrast, is always felt by the tracks and the frame of the train; tilting reduces the force felt in the interior of the train, but not on the frame or in the track. At Hyperloop’s proposed speed and curve radius, getting to 5 m/s^2 force felt in the interior of the train, toward the floor, requires extensive canting. Unfortunately, this means the weight vector would point sideways rather than down, which the lightweight elevated tube structure would transmit to concrete pylons, which have high compressible strength but low tensile strength. This restricts any such system to carrying only very lightweight cargo, of mass comparable to that of passengers. This is less relevant to conventional high-speed rail and even maglev, which use more massive elevated structures, but conversely the problem of high forces on the outer rail ensures cant deficiency must be kept low.

Taken together, this means that high-speed freight can’t be of the same type as regular freight. Hyperloop One, to its credit, understands this. The managers are furiously trying to find freight – any kind of freight – that can economically fit. This has to involve materials with a high ratio of value to mass, for example perishable food, jewelry, and mail. SNCF ran dedicated TGV mail trains for 31 years, but decided to discontinue the service last year, in the context of declining mail volumes.

High-speed freight has a last mile problem. Whereas high-speed passenger service benefits from concentration of intercity destinations near the center of the city or a handful of tourist attractions, high-speed freight service has to reach the entire region to be viable. Freight trains today are designed with trucks for last-mile distribution; starting in the 1910s, industry dispersed away from waterfronts and railyards. The combination of trucks and electrification led to a form of factory building that is land-intensive and usually not found in expensive areas. Retail is more centralized than industry, but urban supermarkets remain local, and suburban ones are either local or auto-oriented hypermarkets. Even urban shopping malls as in Singapore are designed around truck delivery. The result is that high-speed freight must always contend with substantial egress time.

Let us now look at access time. How are goods supposed to get from where they’re made to the train station? With passengers, there are cars and connecting transit at the home end. There’s typically less centralization than at the destination end, but in a small origin city like the secondary French and Japanese cities, travel time is not excessive. In a larger city like Osaka it takes longer to get to the train station, but car ownership is lower because of better public transit, which increases intercity rail’s mode share. On freight, the situation is far worse: industry is quite dispersed and unlikely to be anywhere near the tracks, while the train station is typically in a congested location. Conventional rail can build a dedicated freight terminal in a farther out location (for example, auto trains in Paris do not use Gare de Lyon but Bercy); an enclosed system like Hyperloop can’t.

And if industry is difficult to centralize, think of farmed goods. Agriculture is the least centralized of all economic activities; this is on top of the fact that of all kinds of retail, supermarkets are the most local. Extensive truck operations would be needed, just as they are today. And yet, outside analysts are considering perishables as an example of a good where Hyperloop could compete.

With that in mind, any speed benefits coming from high-speed freight services vanish. There are diminishing returns to speed. Since the cost of extra speed does not diminish, there’s always a point where reducing travel time stops being useful, since the effect on door-to-door travel time is too small to justify the extra expense. The higher the total access plus egress time is, the sooner this point is reached, and in freight, the total access and plus egress time is just too long.

In passenger service, the problem of Hyperloop is that it tries to go just a little bit too far beyond conventional high-speed rail. The technical problems are resolvable, at extra cost, and in a few decades, vactrains (probably based on maglev propulsion rather than Elon Musk’s air bearings) may become viable for long-distance passenger rail.

In freight, the situation is very different. Successful freight rail companies, for example the Class I railroads in North America, China Railways, and Russian Railways, make money off of hauling freight over very long distances at low cost. Quite often this is because the freight in question is so heavy that even without substantial fuel taxes, trucks cannot compete on fuel or on labor costs; this is why Western Europe’s highest freight rail mode share is found in Sweden, with its heavy iron ore trains, and in Switzerland, Finland, Austria, with their long-distance freight across the Alps or toward Russia. Increasing speed is not what the industry wants or needs: past US experiments with fast freight did not succeed financially. The fastest, highest-cost mode of freight today, the airplane, has very low mode share, in contrast with the popularity of planes and high-speed trains in passenger service.

None of this requires deep analysis; in response to Hyperloop One’s interest in freight, an expert in logistics asked “why do we need to move cargo at 500 mph?“. The problem is one of face. The entrepreneurs in charge of Hyperloop One cannot admit that they made a mistake, to themselves, to their investors, or to the public. They are bringing the future to the unwashed masses, or so they think, and this requires them to ignore any problem until after it’s been solved, and certainly not to admit failure. Failure is for ordinary people, not for would-be masters of the universe. The announcement of the grand project is always more bombastic and always reaches more people than the news of its demise. It’s on those of us who support good transit and good rail service to make sure the next half-baked idea gets all the skepticism and criticism it deserves.

Sewer Socialism, or Sewer Neo-Liberalism?

One of the most fundamental questions in urban and transportation governance is the role of ideology. There’s inherent tension between trying to run a government or a government program according to the tenets of socialism, liberalism, conservatism, or any other ideology, and trying to run it pragmatically. I wrote some early posts criticizing the latter tendency, for example here and here; an emergent view coming from the corpus of my political posts here in 2011-2 is that instead of removing ideology from transit politics, ideologues should instead learn best industry practices and use them in the service of their chosen political philosophy. In this post, I’d like to present a more nuanced view about whether this is feasible. Ultimately, I think the situation is unstable: the need to run public services well softens ideologues, while attempts to run ideology-free government involve assumptions that breed outside populist movements.

A few months ago, Sandy Johnston called for a revival of a US tradition called sewer socialism, associated with Socialist Milwaukee mayors Emil Seidel (r. 1910-12), Daniel Hoan (r. 1916-40), and Frank Zeidler (r. 1948-60). The Milwaukee socialists boasted of the municipal sanitation system that they’d built, and were notably corruption-free. This was while they remained in good standing in the Socialist Party, which was orthodox Marxist; Seidel was Eugene Debs’ running mate in the 1912 presidential election.

The problem with the sewer socialist tradition that Sandy cites is that it inevitably makes the sewers more important than the socialism, and soon, the socialists turn into technocrats. This happened to European social democrats starting in the 1930s and 40s. Out of power, and even early in power in the 1920s and 30s, they talked about replacing capitalism with socialism. After years of power, they built public housing for the working class, comprehensive education, and national health care systems, and abandoned revolution; within the US, Zeidler was influenced by Debs and identified as a socialist but explicitly rejected Soviet communism.

The people who passed the laws creating public works, social welfare schemes, and public services were usually committed to social and economic equality, but the people running them would be promoted and rewarded based on competence rather than ideology. A politician could succeed in a social democratic party by showing ability to implement a government program rather than by showing ideological commitment. Sewer socialism turned into sewer big-tent center-left politics, and subsequently into sewer neo-liberalism.

Neo-liberalism is the Great Satan of leftist writing today, and has no agreed upon definition other than “what the leftist writer who uses this term opposes.” Few positively identify as neo-liberal, and the most prominent exception I can think of, Brad DeLong, is someone who specifically enjoys needling the left. For the purposes of this post, I’m going to define neo-liberalism around the following points:

  • Neo-liberals philosophically think in liberal, especially classical liberal, terminology.
  • Market-based solutions to most problems, with the remaining problems cordoned off into areas without political interference, such as central bank independence, and (for neo-liberals more on the left) universal education and health care.
  • A belief in pragmatic, non-ideological governance, to the point of preferring solutions that appear to be reasonable; as a result, few of the people most leftists would identify as neo-liberal are climate hawks, since climate hawks, whatever their other political views, definitionally want aggressive action to mitigate climate change.
  • An attempt to incorporate outsider critiques rather than oppose them heads-on, hence neo-liberal attempts to come up with internal solutions to problems of poverty, inequality, and unemployment.
  • Anti-populism, leading to conflict with not only left-populists but also traditional interest groups such as unions.
  • A positive attitude toward the intellectuals, experts, and technocrats within each field, most famously economics but also the other natural and social sciences.

The populist left today defines itself in diametric opposition to some subset of the above points, and this requires defining itself against the notion that competence in governing is important. This is unmistakable in Jacobin, the most important magazine of the American far left today. Here’s founder and editor Bhaskar Sunkara, in an early interview:

Liberalism has always been an inchoate, diverse ideology. You have some who are more or less operative social democrats; they are pro-union and trying to get back to that golden age of the welfare state. In other words, “class-struggle liberals.” Then you have technocratic liberals, your Ezra Kleins, who also have a very long intellectual tradition. You see it in the history of the press, where we went from a partisan, even ideological press to people like Walter Lippman who made liberalism part of a wider “clean cities, clean government” movement. In the 1960s these technocratic liberals were some of the people cleaning up white racist urban machines. Now they are attacking teachers’ unions and what they see as new city machines, which are predominantly made up of people of color—the people who have mainly benefited from public employment. History has cruel ironies like that.

Or see Sunkara in this extended rant, calling Ezra Klein and Matt Yglesias less than human. Klein is “a technocrat, obsessed with policy details, bereft of politics, earnestly searching for solutions to the world’s problems through the dialectic of an Excel spreadsheet.” Per Sunkara, political success comes not from understanding policy but from emotional appeal, as in the Reagan Revolution, which, he concludes, “wasn’t a policy revolt; it was a revolution.”

There is a reason why ideological movements reject the notion of policy knowledge, of competence. They know that it leads to moderation. Sunkara is educated in the history of socialism and socialist movements, and knows what happened once social democrats had to govern. Even less educated socialists know this on some level, which is why the 1960s’ and 70s’ icon for young leftists was Che Guevara, forever a revolutionary, and not any leader who had to spend any time in power, such as Fidel Castro or even Ho Chi Minh.

While the bulk of this post is about socialism, the same rejection of competence can be seen on the right. Paul Krugman loves to needle the Republicans about it, for example here: for economic analysis, American conservative thinktanks rely on Stephen Moore, Larry Kudlow, and Arthur Laffer, none of whom is a respected economist, rather than on such right-leaning experts as Greg Mankiw, Ed Glaeser, or John Taylor. European mainline conservatives have avoided this, by moderating to the point of accepting the EU, the welfare state, and the advice of the intellectuals. In their stead, right-wing populists have grown in power, taking rejection of any expertise almost as a badge of pride, since they associate expertise with eurocrats; for example, in the Netherlands, the Party for Freedom (PVV) is climate denialist, in the developed country most vulnerable to climate change.

The far left is no more interested in governing than the far right, leading to weakness even on issues the left is supposed to be strong on. In the UK, the current Labour leader, Jeremy Corbyn, got his position on the strength of ideological purity rather than any governing experience; most candidates with government experience are tainted with Blair’s policies, especially the Iraq War. The left is supposed to support transit because it is green and friendly to the poor, and in Britain, the privatization of railroads is now unpopular with the broad public. YouGov proposes that a leader more trusted than Corbyn would be able to turn renationalization into a vote winner. But as related by the then-shadow minister of transport, Corbyn botched a very good opportunity, namely the UK’s annual fare hike, to attack the Cameron administration on rail fare hikes and propose renationalization and reregulation.

I stress that this is not about individual incompetence. The far left does not have a deep bench of people who can run a socialist state well; the people who run socialist programs successfully get accolades from the more numerous moderates and surround themselves with technocrats who are usually not committed to left politics. Corbyn’s opportunity to attack Cameron on rail fares came with the support of Labour’s bench, but his relationship with the rest of the party was always uneasy, and completely unraveled after the Brexit vote; fundamentally, it is not easy for a committed far-left leader to trust a more politically diverse bench.

Five years ago, when I talked about the split in US transit activism between politicals and technicals, I said that both groups were on average slightly left of center, but politicals clustered there, where technicals ranged from far left to reform conservatism (e.g. Reihan Salam) and Rothbardian libertarianism (i.e. segments of Market Urbanism, including Stephen Smith). Yonah Freemark would talk about the dangers and failures of neo-liberalism; in comments, Richard Mlynarik would reference Maher Arar’s extraordinary rendition in discussions of airport security theater, and so on.

Today, the situation has changed. It’s been center-left media outlets like Vox that have talked the most about high US rail construction costs and bad regulations. Among moderates and conservatives, interest never took off, with a handful of positive exceptions like Aaron Renn and again Reihan Salam; City Journal’s Nicole Gelinas remains more interested in cutting wages than in improving efficiency (this post of mine is partly inspired by Gelinas’s claims about wage scales). Most libertarians and many reform conservatives have found dreams of driverless car-share services and view transit as old-fashioned, now as in the 1950s. The growth of US right-populism and its attack on urban intellectuals has also limited concern for reforming transit in publications that should be friendly to this message; The American Conservative is publishing Strong Towns’ Charles Marohn, but overall a rural-dominated radical right is uninterested in either urban infrastructure or pragmatic solutions. Finally, on the far left, the message that political support, even rabblerousing, matters more than cost control, has played well with the growing zeitgeist. By now, the technicals are solidly center-left in practice.

The result is that, as happened to the Milwaukee socialists and to the social democrats on this side of the Pond, any modern-day sewer socialists are necessarily going to moderate. Once moderated, they will not get the support of more radical socialists, who will screamingly accuse them of betrayal. The socialists today know that this is going to happen – unlike in the 1940s, there’s historical precedent for this – and this is leading to the new political split. This is not a resolvable tension. At best, individual center-leftists and leftists who succeed in pushing technical reform can tweak it in ways that help rather than hurt the poor, but collectively there is no way to force reform to be more sewer socialism than sewer neo-liberalism.

When Buses are a Poor Guide to Corridor Demand

Vancouver is going to open the Evergreen Line at the end of the year, an 11-km SkyTrain branch to Coquitlam with a projected ridership of 70,000 per weekday; current ridership on the B-line bus paralleling the route, the 97, is 11,000, the 20th busiest citywide (see data here).

New York is going to open the first phase of Second Avenue Subway at the end of the year or early next year, a total of 4 km of new route with projected ridership of 200,000 per day (see pp. 2-3). The bus running down First and Second Avenues, the M15, has 46,000 weekday riders, trading places with two other routes for first citywide, but first phase only covers a quarter of the route, and the ridership projection in case the entire Second Avenue Subway is built is 560,000; nobody expects the other two top bus routes in New York, the B46 on Utica and the Bx12 on Fordham, to support such ridership if they’re ever replaced with subways.

In Boston, the Green Line Extension northwest in Somerville is projected to have 52,000 weekday riders by 2030. There is no single parallel bus, but a few buses serve the same area: the 101 with 4,800 weekday riders, the 89 with 4,200, the 88 with 4,100, and the 87 with 3,800 (all bus ridership data is from the Bluebook, PDF-pp. 48-54); the busiest of these ranks 28th regionwide.

In all three cases, I think the ridership estimates are reasonable. Vancouver especially has a good track record, with Canada Line ridership meeting projections; it’s harder to tell in New York and Boston, which have not opened a rail line recently (New York’s 7 extension was just one stop, and its predicted ridership explicitly depends on future development). Since in general I do think cities should plan their rail extensions around where the busiest buses are, I want to talk about the situations that create a disjunction.

I mentioned in two past posts that rapid transit that surface transit and rapid transit alignments obey different rules, with respect to street geometry. In the more recent post, I used it to argue that tramway corridors should follow buses. In the older post, I argued that subways can take minor detours or go under narrower, slower streets to reach major destinations, for example Century City in Los Angeles, which is near the Wilshire corridor but not on it. However, the latter case isn’t quite what’s happening in any of the three examples here: Second Avenue Subway follows Second Avenue (though phases 1-2 diverge west to serve Times Square, which is important), and the Green Line Extension and Evergreen Line’s routes are both straighter than any bus in the area.

The situation in Boston and Vancouver is not that there’s an arterial bus that misses key destinations. Rather, it’s that the street network is inhospitable to buses. Boston is infamous for its cowpaths: only a few streets, such as Massachusetts Avenue, are wide and long enough to be reasonable corridors for arterial buses, and as a result, the bus network only really works as a subway feeder, with very high rail to bus ridership ratio by US standards. The corridors that do support busier buses – in the Greater Cambridge sector, those are the 77, 71, and 73 buses – are defined by the presence of continuous arterials more than by high latent travel demand.

Vancouver, of course, is nothing like Boston. Its bus grid is Jarrett Walker‘s standard example of an efficient, frequent bus grid. But this is only true in Vancouver proper, and in parts of Burnaby. In the other suburbs, either there’s an arterial street grid but not enough density for a good bus grid (Richmond, Surrey), or there’s no grid at all (Coquitlam). There’s a bus map of the Port Moody-Coquitlam area, with the 97-B line in bright orange and the 5-roundtrips-per-day West Coast Express commuter rail line in purple; the Evergreen Line will run straight from Port Moody to Coquitlam along an alignment parallel to the railroad, whereas the 97-B has to take a detour. Overall, I would class Coquitlam and Somerville together, as places where the street network is so bad for buses that rail extensions can plausibly get a large multiple of the ridership of existing buses.

Second Avenue Subway phase 1 partly belongs in this category, due to the difficulty of going from Second Avenue to Times Square by road, but high projected ridership on phase 3 suggests something else is at play as well. While First and Second Avenues are wide, straight throughfares, functioning as a consistent one-way pair, two factors serve to suppress bus ridership. First, Manhattan traffic is exceedingly slow. The MTA is proud of its select bus service treatments, which boosted speed on the M15 between 125th and Houston Streets to an average of about 10 km/h; in contrast, the Bx12 averages 13-14 km/h west of Pelham Bay Parkway. And second, the Lexington Avenue Line is 360 meters, so riders can walk a few minutes and get on the 6 train, which averages 22 km/h. The Lexington trains are overcrowded, but they’re still preferable to slow buses.

Now, the closeness to the Lexington trains can be waved away for the purposes of the principle of this post: I am interested in where preexisting transit ridership is not a good guide to future transit ridership, and in this example, we see the demand via high ridership on the 4, 5, and 6 trains. However, the issue of slow Manhattan traffic can be folded generally into the issue of circuitous street networks in Boston and Coquitlam.

It makes intuitive sense that the higher the bus-to-rail trip time ratio is, the higher the rail line’s ridership is relative to that of the bus it replaces. But what I’m saying here goes further: the two mechanisms at hand – a street network that lacks continuous arterials in the desired direction, and extensive traffic congestion – reduce the effectiveness of any surface solution. Is it possible to build tramways in the Vancouver suburbs? Yes. But in Coquitlam (and in Richmond and Surrey, for different reasons), they would be circuitous just like the buses. This also limits the ability of bus upgrades to solve transportation problems in such areas.

Now, what of New York? In theory, a bus or tram with absolute signal priority could run down the Manhattan avenues or the major outer-borough throughfares at high speed. But in practice, there is no such thing as absolute signal priority on city streets. It’s possible to speed up surface vehicles via signal priority, but they’ll still have to stop if cross-traffic blocks the intersection. In Paris, the tramways are not fast, averaging around 17-18 km/h, even though they have dedicated lanes and run on wide boulevards in the outer parts of the city and in the inner suburbs; in contrast, Metro Line 14, passing through city center, averages almost 40 km/h.

The implication here is that when a city develops its subway network, it should pay attention not just to where its busiest surface lines are, but also to which areas have intense activity but have suppressed surface ridership because the roads are slow or circuitous. These are often old city centers, built up before there were cars and even before there was heavy horse wagon traffic. Other times, they are general areas where the road network is not geared toward the desired direction of travel.

In cities without subways at all, there is a danger of overrelying on surface traffic, because such cities often have old cores with narrow streets, with intense pressure for auto-oriented urban renewal as they get richer. This is less common in the developed world, but nearly every developed-world city of note either has a rapid transit network already or is completely auto-oriented and has no areas where the road network is weak. Israel supplies several exceptions, since its transportation network is underdeveloped for how rich it is; in past posts I have already voiced my criticism of the decision to center the Tel Aviv Subway around wide roads rather than the older, often denser parts of the city.

In cities with subways, it’s rarely a systemic problem. That is, there’s rarely a specific type of neighborhood that can support higher rapid transit ridership than preexisting transit ridership would indicate. It depends on local factors – for example, in Somerville, the railroads are oriented toward Downtown Boston, but the streets are not, nor are they oriented toward good transfer points to the subway. This means transit planners need to carefully look at the road network for gaps in the web of fast arterials, and consider whether those gaps justify transit investment, as the GLX and Evergreen Line do.

The Northern Branch Extension is a Waste

As I mentioned in yesterday’s post, negotiations in New Jersey between Governor Chris Christie and the state legislature have resulted in a significant increase in the state fuel tax. The money will raise $16 billion for funding the eight-year Transportation Trust Fund plan, and be matched with federal funds to bring the amount up to $32 billion. Unfortunately, the money is being wasted. Details of most of the plan remain vague, but it appears most of the money will go to road repair; for all I know, $4 billion a year is a reasonable amount for this. But one component of the plan is extension of the Hudson-Bergen Light Rail system north into Bergen County, along the Northern Branch. This is at best a marginal project, and in the long run would make regional rail modernization in Northern New Jersey more difficult.

Despite its name, the HBLR only operates in Hudson County. Plans for extension into Bergen County along the Northern Branch still play an outsized political role due to the name of the line, but have not been realized yet. Right now, the line is partly the light rail system of Jersey City, and partly a circumferential line linking dense areas west of the Hudson, as somewhat of a circumferential. As such, it is a combination of a radial and circumferential. The Northern Branch would send it 13 km farther north into suburbia, terminating in Englewood, a town center with a fraction of the job density of the Jersey City CBD. Projected weekday ridership is 21,000, a little more than 1,500 per km, weak for an urban light rail line. (The HBLR’s existing ridership is 54,000 per weekday on 55 km of route.)

The original cost estimate of the Northern Branch extension was $150 million, low for the length of the line. While reactivating a closed commuter rail like the Northern Branch should be cheaper, the line is single-track still hosts some freight service, so light rail would have to build new tracks in the same right-of-way, raising the cost range to that of urban light rail. Unfortunately, the cost rapidly escalated: by 2009 it was up to $800-900 million, and in 2015, after the proposal was shortened to its current length from an 18 km proposal going deeper into the Bergen County suburbs, the cost was up to $1 billion. The cost per rider is still much better than that of the Gateway Tunnel, but it makes the project marginal at best.

While the high cost may be surprising, at least to the reader who is unused to the expense of building in or near New York, the limited ridership is not. The original plan, going beyond Englewood, would have terminated the line in Tenafly, a wealthy suburb where my advisor at Columbia used to live. Many people in Tenafly objected to that plan, not so much on the usual NIMBY grounds of traffic and noise as on the grounds that the line would not be of much use to them. They were interested in taking public transit to go to Manhattan, and the HBLR system would not be of any use. Of course, Columbia professors would not be using a rail network that went directly to Midtown or Lower Manhattan, but most of the suburb’s Manhattan-bound residents work in the CBD and not at Columbia.

I would probably not be this adamantly against the Northern Branch project if it were just one more over-budget light rail line at $45,000 per projected rider. The US has no shortage of these. Rather, it’s the long-term effect on regional rail.

The Northern Branch would make a good commuter rail line, going from Pavonia (or possibly Hoboken) north to Nyack, connecting to the HBLR at its present-day northern terminus, with about the same stop spacing as the proposed HBLR extension. Potentially it could even get a loop similar to the proposed Secaucus loop of the Gateway project allowing it to enter Penn Station directly. An even better connection would involve a second tunnel between Pavonia, Lower Manhattan, and Atlantic Terminal on the LIRR, with a new transfer station at the junction of the Northern Branch and the Northeast Corridor. Consult this map, depicting the inner segments of various potential commuter lines: the Northern Branch is the easternmost yellow line, the Northeast Corridor is in red and green.

The importance of the Northern Branch for regional rail is threefold. First, the easternmost line in North Jersey today, the Pascack Valley Line, misses a large swath of territory farther east, which is covered by the Northern Branch and by the West Shore Line. The West Shore Line actually passes through somewhat denser suburbs, with more Manhattan-bound commuters, but is a major freight route, whereas the Northern Branch has little freight traffic, which can be scheduled around passenger trains or even kicked out. Second, again shared with the West Shore Line, the Northern Branch provides a north-south line in Hudson County west of Bergen Hill, where there is suitable land for transit-oriented development. And third, the terminus, Nyack, is a town center with a walkable core.

I wouldn’t really object to making the Northern Branch light rail if it were cheap. At the original cost estimate of $150 million, I would be mildly annoyed by the lack of long-term thinking, but I’d also recognize that the cost per rider was low, and at worst the state would have to redo a $150 million project. At $1 billion, the calculus changes considerably; it’s a significant fraction of what a tunnel under the Hudson should cost (though not what it does cost given the extreme amount of scope creep).

High costs, as I said in 2011, should not be an excuse to downgrade transit projects to a cheaper, less useful category (such as from a subway to light rail). In this case we see the opposite happen: high costs are a reason to reject a downgraded project, since the cost per rider is no longer low enough to justify shrugging off the long-term effect on regional rail restoration.

Train Weight and Safety

A recent New Jersey Transit train accident, in which one person was killed and more than a hundred was injured, has gotten people thinking about US rail safety again. New Jersey has the second lowest fuel tax in the US, and to avoid raising it, Governor Chris Christie cut the New Jersey Transit budget (see PDF-pp. 4-5 here); perhaps in reaction to the accident, Christie is announcing a long-in-the-making deal that would raise the state’s fuel tax. But while the political system has been discussing funding levels, transit advocates have been talking about regulations. The National Transportation Safety Board is investigating whether positive train control could have prevented the accident, which was caused by overspeed. And on Twitter, people are asking whether Federal Railroad Administration regulations helped protect the train from greater damage, or instead made the problem worse. It’s the last question that I want to address in this post.

FRA regulations mandate that US passenger trains be able to withstand considerable force without deformation, much more so than regulations outside North America. This has made American (and Canadian) passenger trains heavier than their counterparts in the rest of the world. This was a major topic of discussion on this blog in 2011-2: see posts here and here for an explanation of FRA regulations, and tables of comparative train weights here and here. As I discussed back then, FRA regulations do not prevent crumpling of passenger-occupied space better than European (UIC) regulations do in a collision between two trains, except at a narrow range of relative speeds, about 20-25 mph (30-40 km/h); see PDF-pp. 60-63 of a study by Caltrain, as part of its successful application for waivers from the most constraining FRA regulations. To the extent people think FRA regulations have any safety benefits, it is purely a stereotype that regulations are good, and that heavier vehicles are safer in crashes.

All of this is old discussions. I bring this up to talk about the issue of systemwide safety. Jacob Anbinder, accepting the wrong premise that FRA regulations have real safety benefits, suggested on Twitter that rail activists should perhaps accept lower levels of rail safety in order to encourage mode shift from much more dangerous cars toward transit. This is emphatically not what I mean: as I said on Twitter, the same policies and practices that lead to good train safety also lead to other good outcomes, such as punctuality. They may seem like a tradeoff locally within each country or region, but globally the correlation goes the other way.

In 2011, I compiled comparative rail safety statistics for the US (1 dead per 3.4 billion passenger-km), India (1 per 6.6 billion), China (1 per 55 billion), Japan (1 per 51 billion), South Korea (1 per 6.7 billion), and the EU (1 per 13 billion), based on Wikipedia’s lists of train accidents. The number for India is an underestimate, based on general reports of Mumbai rail passenger deaths, and I thought the same was true of China. Certainly after the Wenzhou accident, the rail activists in the developed world that I had been talking to stereotyped China as dangerous, opaque, uninterested in passengers’ welfare. Since then, China has had a multi-year track record without such accidents, at least not on its high-speed rail network. Through the end of 2015, China had 4.3 billion high-speed rail passengers, and by 2015 its ridership grew to be larger than the rest of the world combined. I do not have statistics for high-speed passenger-km, but overall, the average rail trip in China, where there’s almost no commuter rail, is about 500 km long. If this is also true of its high-speed rail network, then it’s had 2.15 trillion high-speed passenger-km, and 1 fatality per 54 billion. This is worse than the Shinkansen and TGV average of zero fatalities, but much better than the German average, which is weighed down by Eschede. (While people stereotype China as shoddy, nobody so stereotypes Germany despite the maintenance problems that led to the Eschede accident.)

I bring up China’s positive record for two reasons. First, because it is an example of how reality does not conform to popular stereotypes. Both within China and in the developed world, people believe China makes defective products, cheap in every sense of the term, and compromises safety; the reality is that, while that is true of China’s general environmental policy, it is not true of its rail network. And second, China does not have buff strength requirements for trains at all; like Japan, it focuses on collision avoidance, rather than on survivability.

The importance of the approaches used in Japan and on China’s high-speed rail network is that it provides safety on a systemwide level. By this I do not mean that it encourages a mode shift away from cars, where fatality rates are measured in 1 per hundreds of millions of passenger-km and not per tens of billions. Rather, I mean that the entire rail network is easier to run safely when the trains are lighter.

It is difficult to find exact formulas for the dependence of maintenance costs on train weight. A discussion on Skyscraper City, sourced to Bombardier, claims track wear grows as the cube of axle load. One experiment on the subject, at low speeds and low-to-moderate axle loads, finds a linear relationship in both axle load and speed. A larger study finds a relationship with exponents of 3-5 in both dynamic axle load and speed. The upshot is that at equal maintenance cost, lighter trains can be run faster, or, at equal speed, lighter trains make it easier to maintain the tracks.

The other issue is reliability. As I explained on Twitter, the same policies that promote greater safety also make the system more reliable, with fewer equipment failures, derailments, and slowdowns. On the LIRR, the heavy diesel locomotives have a mean distance between failures of 20,000-30,000 km, and the medium-weight EMUs 450,000 (see PDF-pp. 21-22 here). The EMUs that run on the LIRR (and on Metro-North), while heavier than they should be because of FRA requirements, are nonetheless pretty good rolling stock. But in Tokyo, one rolling stock manufacturer claims a mean distance between failures of 1.5 million km. While within Japan, the media responds to fatal accidents by questioning whether the railroads prioritize the timetable over safety, the reality is that the overarching focus on reliability that leads to low maintenance costs and high punctuality also provides safety.

In the US, especially outside the EMUs on the LIRR and Metro-North, the situation is the exact opposite. The mean distance between failures for the LIRR’s diesel locomotives is not unusually low: on the MBTA, the average is about 5,000 km, and even on the newest locomotives it’s only about 20,000 (State of the Commuter Rail System, PDF-pp. 8-9). The MBTA commuter rail system interacts with freight trains that hit high platforms if the boxcars’ doors are left open, which can happen if vandals or train hoppers open the doors; as far as I can tell, the oversize freight on the MBTA that prevents easy installation of high platforms systemwide is not actually oversize, but instead veers from the usual loading gauge due to such sloppiness.

Of course, given a fixed state of the infrastructure and the rolling stock, spending more money leads to more safety. This is why Christie’s budget cuts are important to publicize. Within each system, there are real tradeoffs between cost control and safety; to Christie, keeping taxes low is more important than smooth rail operations, and insofar as it is possible to attribute political blame for such low-probability events as fatal train accidents, Christie’s policies may be a contributing factor. My contention here is different: when choosing a regulatory regime and an overarching set of operating practices, any choice that centers high performance and high reliability at the expense of tradition will necessarily be safer. The US rail community has a collective choice between keeping doing what it’s doing and getting the same result, and transitioning operating practices to be closer to the positive results obtained in Japan; on safety, there is no tradeoff.