When Nationwide Electrification is Called For

Small, dense developed countries should electrify their entire national rail networks. Usually, railroads think in terms of electrifying lines, but this hides the systemwide benefits of transitioning the entire network to run under electricity. I have previously written about this in the context of regionally funded commuter rail systems, as have Paul Druce and Clem Tillier. But some countries are so small and dense that the analysis for a single large metro area holds nationwide as well.

In this post I am going to focus on Israel, which is completely unelectrified, but also foray into mostly-electrified Belgium and the Netherlands, and currently-electrifying Denmark. Switzerland has already completed electrification; it is less dense than all of those countries except Denmark, but has cheap hydro power, which makes it cheaper to run trains under electricity, and key mainlines through mountainous terrain, where electrification is a major performance booster.

First, let us recall the performance benefits of electrification in flat terrain. The major rolling stock manufacturers sell DMUs with top speeds of 120-140 km/h, and EMUs with top speeds of 140-200 km/h; faster trains are generally more expensive, and with a few exceptions not of much use outside dedicated high-speed rail lines. The difference in acceleration performance is large: when the top speed is 100 km/h, an EMU such as the FLIRT takes less than 30 seconds to accelerate from standstill to top speed, corresponding to an acceleration time penalty of about 14 seconds, whereas the Stadler GTW DMU has a penalty of about 28 seconds (see data on PDF-p. 43); the GTW EMU version, a less powerful train than the FLIRT, loses 19 seconds. DMUs are also less comfortable than EMUs, because the diesel engines are right under passengers’ feet; longer-distance lines almost never use them, and instead use diesel locomotives, which accelerate even more slowly.

Because of this large difference in acceleration performance, electrification delivers the greatest performance benefits on lines with closely-spaced stops and high traffic. These are usually commuter rail lines rather than intercity lines. For example, suppose the top speed is 130 km/h, the stop spacing is 3 km, station dwell times are 30 seconds, and schedules are padded 7%. The FLIRT’s acceleration penalty is about 19 seconds, that of the diesel GTW (to 125 km/h) is 43 seconds; the deceleration penalties are both a bit lower than the acceleration penalties, but not too much lower, to avoid overheating. An EMU will average 68 km/h, a DMU 52 km/h. Independently of comparative energy and maintenance costs, this represents a 23% cut in the rolling stock requirement and in the on-board labor cost, and a larger cut in the required subsidy thanks to higher ridership. In contrast, if the stop spacing is 50 km, the difference in speed shrinks to 116 km/h vs. 113 km/h. Even if the EMU can do 160 km/h, its average speed is 140 km/h, still a smaller percentage difference than in the case of commuter rail, while the cost of providing this higher average speed is larger because tracks need to be upgraded to a higher top speed.

In small countries, short stop spacing is the normal state of affairs. In Israel, few segments of track have stops spaced more than 10 km apart, and those are mostly on the under-construction high-speed line from Tel Aviv to Jerusalem, which is planned to host 200 km/h electric trains. In the Tel Aviv and Haifa metro areas, stop spacing in the 3-4 km range is normal. Even intercity trains make all stops within Tel Aviv and Haifa proper, skipping the stations between those two cities. There are no major cities north of Haifa, only suburbs and small cities, and thus making many stops in and north of Haifa is justified for intercity trains – there aren’t many through-passengers who are being inconvenienced. South of Tel Aviv there are some moderate-size cities (as well as Jerusalem, but the legacy rail line to it is so curvy that the train from Tel Aviv takes twice as long as the bus), but because of high traffic, all trains make all four Tel Aviv stops.

With the exception of Belgium, all four countries under discussion also have dominant primate city regions, with about 40% of their respective national population; those city regions have dense rail networks, which are electrified in all countries except Israel. Denmark runs the Copenhagen commuter lines as a separate S-tog from the rest of the network, but in the Netherlands, Israel, and Belgium, there is no sharp difference. The result is that a large fraction of the overall rail network is urban commuter rail, which should be electrified, while additional chunks are regional rail with enough frequency to justify electrification even without a large city in the center.

Moreover, the service pattern makes it hard to electrify just a few lines in isolation, even if they’re the busiest. Regional rail networks frequently employ through-running. In small countries, this is common for the entire rail network, for different reasons: in Israel, the route through Tel Aviv is a new line from 20 years ago, without many platform tracks for terminating trains, whereas in the Netherlands and Belgium it’s the result of a highly nonlinear population distribution, which favors a mesh of lines, such that busy routes share tracks extensively with less busy ones. Compare these population distributions with that of the Northeastern US, where there is clear division into a trunk from Washington to Boston and branches heading inland.

Finally, these are all small countries. This is why I am not including South Korea in this proposal, even though it is denser, more mountainous, and more primate city-centric than all countries under discussion: South Korea is large enough that it’s plausible to run the Seoul-area commuter rail as an isolated electrified system, keeping the remainder of the legacy network unelectrified, with several maintenance shops for diesel trains around the country. In contrast, the unelectrified portion of the Dutch rail network consists of isolated branch lines, making it less economic to keep operating diesel trains. Israel has no electrification at all, but if it electrifies the Tel Aviv and Haifa commuter trains, the remainder of the network will be disjointed, requiring inefficient solutions such as considerable deadheading, or regular runs of diesel trains under long stretches of catenary.

One example I keep harping on, which I got from The LIRR Today before its blackout, is the LIRR’s diesel runs. The LIRR is almost completely electrified, and its diesel branches see little service, especially at the easternmost end of Long Island. Between this and work rules that separate diesel and electric train crew, the crew on one of the diesel trains work 2.5 hours per workday, running a train once in one direction and deadheading the way back; this and the bespoke nature of diesel trains on the LIRR lead to high operating costs.

The situations in the countries in question are not as comical as on the LIRR, but there are bound to be inefficiencies in Belgium and the Netherlands, and soon to be Denmark, which is electrifying its main lines, which together with the S-tog are a majority of its network. In Israel, the situation is the worst, since its rail network is even smaller: 1,100 km, compared with 2,600 km in Denmark, 3,600 in Belgium, and 2,900 in the Netherlands; this means that a partially electrified situation involves even smaller train orders and higher operating costs, while an entirely unelectrified network involves poor service in the urban areas.

Israel also has no rail links with any of its neighbors, nor any plans to construct any. This means that its branch lines are truly isolated, unlike those of the Netherlands, Belgium, and Denmark, which sometimes connect to other unelectrified lines in neighboring countries.

The way out of high diesel operating costs is to spend the money on completing electrification. As the example of Denmark shows, the costs are not outrageous: about $1.1 million per kilometer (I do not know whether track- or route-km, but I believe this is track-km). In the case of Israel, whose rail network is almost entirely single-track, this is not much more than $1 billion either way; to put things in perspective, the projected cost of the first Tel Aviv subway line is now up to $4.2 billion, while the Ministry of Transportation’s overall budget is $3 billion per year (PDF-p. 10), mostly spent on roads, in a country with only 300 cars per 1,000 people.

All-diesel railroads resist electrifying their busiest lines because they prefer to be able to let every train substitute for any train, and, for smaller operations, maintain all trains in one yard. For the same reason, small railroads with high traffic, such as the national railroads of dense countries, should instead go all-electric, in order to retain the benefits of interchangeable trains and maintenance facilities while also capturing the benefits of electrification. It’s not terribly relevant to the countries I’ve recently lived in, but for the same reason Switzerland fully electrified, similar small, dense countries should do the same.

Posted in Israel, Regional Rail, Transportation | 19 Comments

Transit-Oriented Airports

There are recurrent discussions of how to best connect public transportation to airports; I, too, have made my comments both on how desirable such connections are and how to best build them. What I think is less discussed is how to build airports in a way that makes it easier to serve them by public transit. Airport authorities spend billions every few decades rebuilding terminals, sometimes even moving the entire airport to a new location, but they never consider how to do so in a way that makes transit access the easiest; this means airport access is done by car, or another high-cost scheme must be implemented to bring a rail line to the airport. Now that there is a plan to replace the Newark AirTrain for a billion dollars, just twenty years after it was first built, it’s worth discussing what capital projects on the airport side should facilitate transit access.

First, recall from previous discussions on this blog that the best way to serve a major international airport is by a mainline train, which is capable of both providing fast service to the CBD (where most inbound air travel is headed) and to many suburbs (which have outbound travelers).

However, we can say more: it is better, other things being equal, for the airport to be on the way, rather than at the end of a line. If the airport must be at the end of a line, it should not be far from where the line would’ve ended if the airport were not there. For example, LaGuardia is a few kilometers east of the end of the Astoria Line, which can be extended. Vancouver’s airport is on a short branch of the Canada Line, which would have been built to Richmond Centre even without the airport.

An even better example would have been Floyd Bennett Field, just past where the Utica subway should end; there were plans in the 1930s to build such a subway, but not only were they never realized, but also Mayor LaGuardia preferred to build the airport that currently bears his name, for easier auto access to Manhattan than Bennett Field had. Thus we can catalog the decision to open the new airport and close Bennett Field as bad for transit access, and oppose similar moves when cities today propose them. The best location for an airport, from the point of view of transit access, is near a subway or commuter rail station, ideally close enough that no further people mover is required.

Let us now discuss internal airport design. I claim that, to maximize transit accessibility, airports should have just one terminal (or several terminals that can be served from the same station), or, failing that, one dominant terminal, as at such fortress hubs as Detroit, Frankfurt, and Charles-de-Gaulle. The reason is that trains are slowed down by additional stations, whereas cars are not slowed down by additional bays and driveways. Mainline trains, in particular, rarely make more than one stop at an airport, and in the cases I know of where they do, the airport is at the end of a branch (such as the RER B and the lines serving Narita), rather than on the way.

This introduces some tension into airport design. Large airport terminals are dendritic, to maximize the perimeter available for gates and jetways; in some cases, they feature satellite terminals, connected to the main terminal by underground passageways, people movers, or even landside buses (as at Charles-de-Gaulle). I encourage people to look at satellite images of Frankfurt, O’Hare, Atlanta, Zurich, and Charles-de-Gaulle. Frankfurt’s Terminal 1 is a kilometer from entry to the farthest branches to the west. This creates some demand for quicker small terminals, which are harder to serve by rail. In addition, the most efficient dendritic design has branches coming out from the center in every direction, except perhaps one direction for an access road; this makes it harder to be on the way of a rail line.

I think it is telling that the single- or dominant-terminal design is less common at airports that are not a single airline’s fortress hub. Haneda and Narita have two major terminals each, one used by Japan Airlines and one used by ANA. Madrid has four terminals, one for Iberia and three connected ones, sharing a Metro station, for competitors, including several low-cost airlines. In all three cases, there are two train stations per line connecting to the airport (with the understanding that Narita has multiple lines, operating by competing railroads).

Usually, airports make an effort to group airlines by alliance. Thus Charles-de-Gaulle and Frankfurt put their respective dominant airlines and partners in their main terminals, and competing airlines in smaller terminals; and Narita makes sure to group Star Alliance airlines with ANA and Oneworld airlines with JAL. Among the largest airports of Europe, Heathrow is the big exception, since it organizes terminals by alliances but splits Oneworld between Terminal 5 for British Airways and Terminal 3 for the rest.

In the US, this is not common, with some exceptions such as Detroit and JFK’s Terminals 7 and 8. This is because the US does not permit connecting air passengers to transit its airports. All passengers arriving at a US airport from a foreign airport without preclearance, even ones in transit, have to go through immigration, collect their bags, go through customs, recheck their bags, and go through security again; between the inconvenience and the real risk of literally being disappeared, few people connect in the US between two foreign countries. Hub terminals elsewhere facilitate easy transfers by maintaining large international areas where passengers can walk between gates, and keeping the passport controls between the international and domestic terminals short. Regardless, even with the vagaries of American immigration policy, it is easier to connect without having to go between terminals; moreover, for passengers leaving the US rather than arriving, the situation is if anything easier than in Europe since there’s no passport control at exit.

Let us now apply these concepts to New York’s two main international airports. Newark may be a fortress hub, but it is not configured as one; United and its Star Alliance partners are sprawled across all three terminals. Moreover, the terminals are just far enough from the commuter rail station to require a people mover. Since it’s better for an airport to be on the way, and have just a single terminal, what this suggests is that Terminal C should be lengthened to approach the train station.

There is currently a plan to replace Terminal A, for $1-1.25 billion of construction budget and $2 billion total development budget. Under this single-terminal paradigm, the terminal should not be redeveloped. Instead, it should be demolished, and replaced by extensions of Terminal C to the west, with additional concourses and piers both to the north and to the south, replacing the current road loop serving the terminals. People would arrive by road via US 1 or by rail via the commuter rail station. Security checkpoints would be conducted at a building just west of Route 1, and the airside terminal’s western end would be an overpass over the road. Rail passengers would have enclosed overpasses to the checkpoints; there would not be any need for a people mover, only moving walkways given the distance between the station and the terminal’s current eastern end. There is enough space for the new concourses to also replace Terminal B, which is of similar vintage to Terminal A.

At JFK, the situation is different. First, it is not a fortress hub. Its top three carriers – JetBlue, Delta, and American – are all reasonably happy with their terminals (Delta’s terminal is 4, not 2, which it is abandoning). British Airways is considering abandoning Terminal 7 and joining American at Terminal 8. Consolidating the airlines that use Terminal 1 at Terminal 4 is impossible until the US resolves its endless immigration lines, which at Terminal 4 are often longer than an hour.

Second and more fundamentally, the transit access situation there is good enough. JFK is far from any subway or commuter rail line, so the only way to serve it by rail is by a dedicated people mover, of which the AirTrain is not bad. The connection to Jamaica approaches the “be on the way” maxim well, since Jamaica is central to the LIRR network and has fast service to Manhattan on the subway as well. Some transit advocates in the region periodically propose a direct subway or commuter rail line to replace the AirTrain connection, but such plans always run against network design issues, since the branching is set up in a way that reduces frequency to Jamaica, a more important station. Given that there must be some people mover connection, traveling in a circle among the terminals is not terrible; straightening the route has some benefits, but the cost of rebuilding the infrastructure is almost certainly too high to be justified.

Update: James Sinclair argues convincingly that the Newark AirTrain is not really at the end of its life, but Port Authority is saying that to justify spending billions of dollars on a better replacement, including either a PATH extension to the airport station (which is largely dead) or an extension of the AirTrain to Newark Penn Station, as a sweetener for United.

Posted in New York, Regional Rail, Transportation | 28 Comments

Bergenline Avenue and New Hudson Tunnels

The main street of Hudson County from Jersey City north is Bergenline Avenue. It passes through the densest cities in the US (denser than New York, which is weighed down by outer-urban areas), and hosts frequent jitney service. Last decade, New Jersey began to document jitney service in North Jersey, producing a report in 2011 that identified major corridors; Bergenline is the busiest, with a jitney almost every minute, and almost as frequent additional jitney and New Jersey Transit service on the northern part of the route running into Manhattan via the Lincoln Tunnel. This was discussed extensively on Cap’n Transit’s blog three years ago, and I thought (and still think) Bergenline should eventually get a subway line. I bring this up because of a critical tie-in to Bergenline’s transit service: new mainline Hudson tunnels. If the new tunnels are built to host regional rather than intercity trains, then they should also make a stop at Bergenline to allow for easier transfers from the buses to Manhattan.

Unfortunately, there are no estimates of ridership on the Bergenline buses. The 2011 report did rough counts of passengers per hour passing through a single point, but that is not directly comparable to the usual metrics of ridership per day or per year. Moreover, the report assumed there are 16 passengers per jitney, where, at least in Cap’n Transit’s experience, the jitneys on Bergenline are considerably larger, in the 20-30 passenger range. Either way, they’re smaller than full-size buses, which means we can’t just compare the frequency on Bergenline with that on busy New York bus corridors. However, a bus in that size range almost every minute, both peak and off-peak, is bound to have comparable ridership to the busiest buses in New York: the single busiest, the M15, runs articulated buses every 3 minutes at the peak and every 4 off-peak.

There are several corridors heading into Manhattan. According to the summary on the report’s PDF-page 51, Bergenline has jitneys heading into Port Authority every 2-4 minutes at the peak, and New Jersey Transit buses (routes 156 and 159) every 5 minutes. Paralleling Bergenline, JFK Boulevard East has a jitney every 4-5 minutes (with larger vehicles than on Bergenline), and a New Jersey Transit bus almost every minute at the peak (route 128). There is also very frequent New Jersey Transit bus service, more than once per minute between routes 156, 159, and 166, running nonstop to Port Authority at the peak; unlike the jitneys, New Jersey Transit bus service is extremely peaky, with the combined routes 156 and 159 dropping to a bus every 15 minutes, and the Boulevard East routes (165, 166, 168) dropping to a bus every 9 minutes.

From the New Jersey Transit schedules, peak-hour buses spend 18-19 minutes getting into Port Authority from Bergenline, and 14 minutes getting into Port Authority from Boulevard East. In contrast, a train station located under Bergenline would have service to Penn Station taking about 3 minutes. Trains go through the existing older tunnel at about 100 km/h, and the new tunnel could support at least the same speed, while a through-running service plan would simplify the Penn Station interlockings enough that trains could enter and leave the station at speed. Even allowing for transfer time and for additional wait times, which are very short at the peak anyway, this represents an improvement of more than 10 minutes.

It goes without saying that the service should be frequent and affordable. The fare should be the same as on the subway, with free transfers. There’s some precedent in that PATH charges similar fares to the subway, but free transfers, a basic amenity in regions with integrated transportation planning, would be new to New York. At the peak, all trains would stop at Bergenline, since there’s not enough capacity to mix stopping and nonstop trains on the same tracks given expected traffic. But even off-peak, all trains should continue stopping at Bergenline – as well as at Secaucus – in order to maintain adequate frequency. Given how dense and close to Manhattan the area is, 10 minutes is the maximum acceptable headway, which corresponds to the combined off-peak frequency of all New Jersey Transit trains into Penn Station today.

While the busiest trunk line does not even enter Manhattan, the presence of fast, frequent regional rail with competitive fares is likely to change travel patterns. This is not the same as transit-oriented development: I am not assuming a single new building on top of the Palisades. Instead, some people who live and work in northern Hudson County would shift over time to working in New York, thanks to improved transportation links. In parallel, people working in New York would move to cheaper housing in Hudson County. In the other direction, companies that want to attract reverse commuters might locate to the area around the new station. The overall effect would integrate northern Hudson County into the core better, turning it into more of a bedroom community, like Brooklyn and Queens, while simultaneously concentrating its employment around the station. The upshot is that this station would already come equipped with a huge installed base of feeder buses, which run the route already without a connection to Manhattan. A longer-range plan to build a subway under Bergenline, from Fort Lee to Journal Square, would further integrate the entire west bank of the lower Hudson into the city core.

This tilts the best traffic plan for new tunnels away from Amtrak’s Gateway plan and back toward New Jersey Transit’s various flavors of ARC. First, it’s easier to build the station while the tunnel is excavated than to build the station in the preexisting tunnel. At the same time, whichever tunnel has the station should be the one without intercity trains: all peak trains would have to stop at the station for capacity reasons (there’s no room for bypass tracks), and this would slow down intercity trains unacceptably. Put together, this means Amtrak should stay in the old tunnels and all traffic in the new tunnels should be regional.

Second and more importantly, a high-grade new tunnel pair from New Jersey to Penn Station should also continue onward to Grand Central, with trains running through to Metro-North territory. The importance of through-running and good service to multiple urban nodes is greatest for local service and smallest for long-distance service. In Paris, the RER involves through-service for shorter-range commuter trains; the Transiliens, which terminate at the traditional terminal stations, serve farther-away suburbs. And in Tokyo, the local lines of the JR East network run through whereas the express lines either don’t or have only started doing so recently. The reason is similar to a pattern I mentioned before about airports: at long range, people only travel to the city for functions that their region lacks, and those are usually centered on the CBD, whereas at short range, people travel in all directions. The upshot of this discussion is that a Bergenline stop is likely to add many local travelers to the system, and they should get the service that’s more useful for their needs.

Of course, a good service plan will involve through-running in both the old and new tunnels. However, through-running is more valuable in the new tunnel, going to Grand Central, than in the old tunnel, going to Long Island and the Northeast Corridor. As a judgment call, I believe that through-running to Grand Central, Harlem, and the South Bronx connects to more neighborhoods than through-running to Sunnyside, Flushing, and Jamaica. It also has better subway connections, to the 4/5/6 if to nothing else, and local riders are accustomed to two-seat rides and subway connections. Finally, under a fuller regional rail plan, including service to Lower Manhattan, Grand Central has connections to Lower Manhattan and Downtown Brooklyn whereas Penn Station and Sunnyside don’t.

In contrast, Amtrak’s plan gets it exactly backward in proposing to use the Gateway tunnel for its own trains and some additional regional trains. The only advantage of this plan is that it would be possible for regional trains to maintain higher speed through the wider-diameter new tunnel (intercity trains could raise speeds more easily, since high-speed trains are pressurized to limit ear popping when they enter tunnels). But by hogging slots in the Penn Station-Grand Central tunnel, Amtrak would force many local and regional rail riders onto trains that do not serve their destination directly and do not have an easy transfer to it.

The only drawback of this plan is cost. The station would be located deep beneath the Palisades, complicating its construction. While the access shafts are not difficult – vertical bores for elevators are simply to build – the station itself would require blasting a cavern, or using a large-diameter bore. The cavern option is not cheap. I am not going to try coming up with a cost estimate, but I will note that the station caverns of Second Avenue Subway Phase 1, which are built cut-and-cover rather than blasted from inside, are around a billion dollars each. A large-diameter bore is more attractive, but is more expensive than twin small-diameter bores if there are no stations, and may well have difficulties emerging at the Manhattan end.

Without reliable estimates for either the incremental cost or the incremental ridership, I can’t say whether this is a cost-effective proposal. I suspect that it is, given the high ridership of the Bergenline buses and the high density of the region. Part of what makes an S-Bahn or RER system successful is its service to urban neighborhoods and not just suburbs and CBDs, and Bergenline could be a good addition to the system that the region should be building.

Posted in Amtrak, New York, Regional Rail, Transportation, Urban Transit | 68 Comments

Redundancy is Overrated

The night before last, a Northeast Corridor Amtrak train derailed in Philadelphia, killing seven people. For some overviews of what happened, see Vox and Huffington Post. I am not going to talk directly about the accident here; it appears to be the same kind of derailment as on Metro-North a year and a half ago. Instead, I’m going to talk about the general issue of redundancy, which I saw people bring up in response to the train shutdowns that followed the crash. This is not the first time I hear about this; redundancy figures prominently into the list of benefits touted for new rail tunnels across the Hudson, allowing Amtrak to shut down the existing tunnels for repairs. Even before Amtrak proposed the Gateway project, transit activists talked about redundancy as a positive feature, for example Cap’n Transit. In this post, I am going to explain why, in public transportation and intercity rail, redundancy is in fact far less useful than other investments for the same amount of money.

First, let us list the various high-caliber rail networks of the world. In high-speed rail, the biggest networks are those of China, Japan, and France. None of them has redundancy, in the sense that there is more than one way to get between two cities on high-speed track. JR Central is building a second line from Tokyo to Osaka, but this is because the existing line is at capacity, running about 14 trains per hour into Tokyo at the peak; redundancy is a minor consideration. In regional rail, the busiest networks do have some redundancy, in the sense that if one line is shut down then people can take a parallel line, but this is because these networks are so busy that in most directions there’s enough demand to fill multiple lines. In Tokyo, which has the largest regional rail network, the parallel line is usually run by a competing company, so within each company’s network there’s little redundancy.

The reason for this non-redundant operation is simple: building new rail lines is expensive, while maintaining them adequately so that they don’t break down is cheap. Amtrak thinks that the Gateway tunnel will cost $16 billion. The program to repair the damage the preexisting tunnels suffered in Hurricane Sandy is $700 million, which assumes an accelerated construction schedule in which the tunnels will be shut down one track at a time, but conversely also includes work in the worse-damaged East River tunnels and not just the tunnels across the Hudson. This is a one-time repair after salt water intrusion, not annual ongoing maintenance. New Hudson tunnels are a necessary project for capacity reasons, but whatever benefit they have for redundancy is a fraction of their cost.

For high-speed rail, too, the cost of maintenance are far smaller than those of construction. The average maintenance costs of a single route-km of HSR are about €100,000 per year, versus €20 million for construction (see PDF-p. 9 of a study by Ginés de Rus about HSR between Stockholm and Gothenburg). With this amount of maintenance, there need not be any closures or disruptions in service.

Consider the Northeast Corridor, more concretely. To guarantee redundancy everywhere, so that train accidents do not disrupt the line, is to restore some passenger service along the former Baltimore and Ohio and tie-ins. Between Philadelphia and New York this means the West Trenton Line; between Philadelphia and Washington this means the CSX freight line. This also requires new Hudson tunnels. The cost of each of these elements is in the billions, and for the most part, with the exception of the new Hudson tunnels the transportation benefit is very low, especially south of Philadelphia, where there aren’t enough people to justify a second commuter line. Between New York and New Haven, there are no good alignments for a second route except for short bypasses; that’s what makes constructing HSR there so difficult.

Redundancy is a good feature of networks where failures are frequent and unavoidable; for such systems, redundancy is useful, as is the concept of failing gracefully. Rail transit is not such a network. It is both possible and desirable to reduce accident rates to levels approaching zero. Natural disasters remain hazardous, but are extremely infrequent, and at any rate when a deadly earthquake strikes, there are higher priorities than providing alternative passenger rail routes.

This is not to say that redundancy has no uses. Dense subway systems are redundant in the sense of providing multiple routes through the city – although, at the peak, they’re usually all very crowded. This makes it possible to shut down lines off-peak for maintenance; New York and London are both notorious for weekend service changes, and Paris shuts down short segments of lines for maintenance for a few weeks at a time (see for example here). But small subway systems manage to make do with just ordinary overnight shutdowns, and Copenhagen even runs trains 24/7, shutting down one track at a time at night and using the driverless operation to run trains on single track. It’s just more convenient to have more options, but not necessary.

The upshot is that when a subway or mainline rail network chooses where to lay additional lines, it should ignore all needs of redundancy, except possibly as tie-breakers. The benefits are there, but do not outweigh the cost of building less optimal lines. The operator should instead invest in systems, worker training, and maintenance regimes that ensure high reliability, and expand the network based on ordinary criteria of expected ridership and capacity needs. There’s no need to worry about failure, and it’s much better to design the network not to fail in the first place.

Posted in Incompetence, Transportation | 40 Comments

The Utica Subway

Last week, Bill de Blasio released a plan for New York’s future called OneNYC, whose section on subway expansion called for a subway under Utica Avenue in Brooklyn (PDF-pp. 45-46). The call was just a sentence, without mention of routing or cost or ridership projections, and no plan for funding. However, it remains a positive development; last year, I put the line at the top of a list of underrated subways in North America. Presumably the route would be a branch off the Eastern Parkway Line, carrying the 4, while the 3 continues to go to the current New Lots terminus.

The cost is up in the air, which means that people forming opinions about the idea don’t have the most important and variable number with which to make decisions. In this post, I am going to work out the range of cost figures that would make this a worthwhile project. This has two components: coming up with a quick-and-dirty ridership estimate, and arguing for a maximum acceptable cost per rider.

Before doing anything else, let us look at how much such a subway extension should cost, independently of ridership. Between Eastern Parkway and Kings Plaza, Utica is 6.8 km. The non-English-speaking first-world range is about $300 million to $3 billion, but around $1.4 billion, or $200 million/km, is average. Utica is a wide, relatively straight street, without difficult development alongside it. In fact, I’ve been convinced in comments that the line could be elevated nearly the entire way, south of Empire Boulevard, which would reduce costs even further. Normal cost should then be around $100 million per km (or $700 million), and even in New York, the JFK AirTrain came in at a $200 million/km. I doubt that an elevated solution could politically happen, but one should be investigated; nonetheless, a $1.4 billion subway would be of great benefit.

Now, let us look at ridership. Recall that Utica’s bus route, the B46, was New York’s third busiest in 2014, with 46,000 weekday riders. But two routes, Nostrand’s B44 and Flatbush’s B41, run parallel and provide similar service, and have 67,000 riders between them. Those numbers are all trending down, as residents gradually abandon slow bus service. A subway can realistically halt this decline and generate much more ridership, via higher speed: B46 limited buses average 13 km/h south of Eastern Parkway, but a new subway line could average around 35 km/h. Second Avenue Subway’s ridership projection is 500,000 per weekday, even though all north-south bus lines on Manhattan’s East Side combined, even ones on Fifth and Madison Avenues, total 156,000 daily riders.

Vancouver is considering replacing its busiest bus, the 99-B, with a subway. The 99-B itself has 54,000 weekday riders, the local buses on Broadway (the 9 and 14) have 43,000, and the 4th Avenue relief buses (the 4, 44, and 84) add another 27,000. Those are much faster buses than in New York: the 99-B averages 20 km/h, while the 44 and 84, running on less crowded 4th Avenue, average nearly 30 km/h west of Burrard. SkyTrain is faster than the New York subway since it makes fewer stops, so the overall effect would be similar, a doubling of travel speed, to about 40 km/h. The ridership projection is 250,000 per weekday in 2021, at opening, before rezoning (see PDF-p. 75 here). This represents a doubling of ridership over current bus ridership, even when the buses provide service SkyTrain won’t, including a one-seat ride from the Westside to Downtown and service along 4th Avenue.

In New York, as in Vancouver, the subway would provide service twice as fast as current buses. The distance between Nostrand and Utica Avenues is much greater than that between 4th Avenue and Broadway in Vancouver, so the analogy isn’t perfect (this is why I also support continuing Nostrand down to Sheepshead Bay). Conversely, the speed advantage of subways over buses is greater than in Vancouver. Moreover, Nostrand already has a subway, so actual demand in southeastern Brooklyn is more than what the B41, B44, and B46 represent. A doubling of ridership over bus ridership, to about 220,000, is reasonable.

For a quick sanity check, let us look at Nostrand Avenue Line ridership again. South of Franklin Avenue, the stations have a combined weekday ridership of 64,000 per weekday, as of 2014. But this is really closer to 128,000 daily riders, counting both boardings and alightings; presumably, few people ride internally to the Nostrand corridor. The Nostrand Avenue Line is 4.3 km long; scaled to length, we get 200,000 weekday riders on Utica.

Put together, a normal-cost Utica Line, with 200,000 weekday riders, would cost $7,000 per rider. This is quite low even by non-US standards, and is very low by US standards (Second Avenue Subway Phase 1 is about $23,000 according to projections, and is lower than most US rail lines).

As far as I’ve seen, from glancing at lines in large cities such as London, Paris, and Tokyo, the normal cost range for subways is $10,000-20,000 per rider. Paris is quite cheap, since its ridership per kilometer is so high while its cost per kilometer is not very high, keeping Metro extensions in the four figures (but Grand Paris Express, built in more suburban geography, is projected at $34 billion for 2 million daily passengers). Elsewhere in Europe, lines north of $20,000 are not outliers. If we set $25,000/rider as a reasonable limit – a limit which would eliminate all US rail lines other than Second Avenue Subway Phase 1, Houston’s light rail extensions, and Los Angeles’s Regional Connector – then Utica is worth $5 billion. A more generous limit, perhaps $40,000 per rider to allow for Second Avenue Subway Phase 2, would boost Utica to $8 billion, more than $1 billion per km. Even in the US, subways are rarely that expensive: the Bay Area’s lines are only about $500 million per km.

The importance of the above calculation is that it is quite possible that Utica will turn out to have a lower projected cost per rider than the next phase of Second Avenue Subway, a project for which there is nearly universal consensus in New York. The original cost projection for Second Avenue Subway’s second phase was $3.3 billion, but will have run over since (the projection for the first phase was $3.7 billion, but actual cost is nearly $5 billion); the ridership projection is 100,000 for each phase beyond the first, which is projected at 200,000. In such a situation, the line would be a great success for New York, purely on the strength of existing demand. I put Utica at the top of my list of underrated transit projects for a reason: the line’s worth is several times its cost assuming world-average per-km cost, and remains higher than the cost even at elevated American prices. The de Blasio administration is doing well to propose such a line, and it is nearly certain that costs will be such that good transit activists should support it.

Posted in Construction Costs, Good Transit, New York, Transportation, Urban Transit | 78 Comments

Quick Note: MBTA Electrification

I’ve been thinking about MBTA modernization recently, and realized that although the principles underlying modernization are similar throughout North America, the concrete benefits and the resulting political alliances that could push for it are very different. In New York and Chicago, commuter rail is already quite good if you’re a suburban middle-class commuter working in the CBD at regular business hours. Penn Station may not be ideally located for Midtown commuters, but the LIRR is building East Side Access to fix that; this leads to arguments such as this one, about which group of riders (or potential) riders to prioritize.

The MBTA is completely different. It does not provide adequate service even for peak-hour commuters, because the speed leaves a lot to be desired; where the LIRR runs decent if not good rolling stock, the MBTA rolling stock loses 70 seconds accelerating just to 60 mph (FLIRTs lost 24 seconds accelerating to 160 km/h). As Purple City notes in comments, electrification would be a Pareto-improvement, allowing large increases in speed even with infill stops. The discussion of whether to prioritize short-distance or long-distance service is still important, but any choice would substantially improve service to everyone over the current offering.

This means that the politics of modernization is different. In New York, Long Island commuters are the primary obstacle: modernization would replace their peak express trains with reverse-peak trains on the one-way Main Line, and crowd their trains in the outbound direction. In Boston, there aren’t enough urban riders to result in so much crowding, the speed would go up substantially, and, with the North-South Rail Link, North Side commuters would have service to the CBD and not just North Station.

The cost of such modernization consists of four main projects: the North-South Rail Link itself, complete electrification of all lines, full-length high platforms at all stations, and new rolling stock. The latter is perhaps $1.5 billion initially, corresponding to 600 cars, but in reality displaces equivalent or higher cost that has to be spent on new diesel locomotives and cars under the current operating pattern. The NSRL was pegged at $3-4 billion, but since it’s in easy geology (the ground was already cleared during the Big Dig), costs do not have to be higher than in the rest of the world, which would be closer to $2 billion for two large-diameter bores. Complete electrification is perhaps another $1.5 billion. It’s a fraction of what the state spent on the Big Dig, and not a large multiple of what it’s spending on a few thousand daily riders for South Coast Rail.

The political alliance in this case would be the exact one that would oppose modernization in New York and Chicago. This list of projects does little for the inner city, with exceptions around possible infill station sites like Allston. However, it provides much higher speeds for the suburbs. This is what’s so interesting about it. It’s not even easy to unbundle the parts that are useful to the suburbs from the parts that improve service in general, since the North-South Rail Link, which is crucial for service from the north to Boston, requires electrification, and once that’s in place, high platforms and infill stations are cheap. Whereas elsewhere, political inertia makes modernization hard, in the Boston area, once someone proposes it, I believe large chunks of the mainstream will jump on the idea.

Posted in Politics and Society, Regional Rail, Transportation | 52 Comments

Homeowner’s Bill of Rights to Preempt State and Local Zoning Laws

After weeks of fraught negotiation, House of Representatives Speaker John Boehner (R-Ohio) announced that both houses of Congress had reached agreement on passing the Homeowner’s Bill of Rights (HOBOR), which uses the preemption doctrine to abolish most local planning restrictions. President Obama announced that he would sign the bill, which includes several provisions pushed by urban environmentalists. While the majority of Republicans announced their intention to vote yes and the majority of Democrats announced they would vote no, HOBOR relies on cross-bench support, as several prominent Republican lawmakers identified with the Tea Party, including presidential hopefuls Senators Ted Cruz (R-Texas) and Rand Paul (R-Kentucky), announced they would oppose the bill on the grounds of federal overreach.

Despite early environmentalist hopes that the bill would be narrowly targeted at suburban single-family zoning, HOBOR casts a wide net. It preempts any separation of residential, commercial, and industrial uses; maximum heights and floor area ratios; open space requirements; environmental restrictions including noise limits and endangered species protections; urban growth boundaries; parking minimums and maximums; single-family mandates; form-based codes; anti-McMansion ordinances and minimum lot sizes; affordable housing mandates; and setback requirements. It also requires the federal government to study privatizing federal land adjacent to urban areas and to consider the effects of growth controls on the housing market, a move that is expected to liberalize construction in the West. It does not preempt private deed restriction, despite an attempt by urban Democrats to ban it, but does ban cities from giving public incentives for it.

Boehner’s office released a statement, “The Homeowner’s Bill of Rights will prevent power grabs by special interests and by the federal government, and reduce the level of regulation in America’s cities.” Governor Greg Abbott (R-Texas), who recently proposed a similar law in Texas before Congress federalized the issue, credited Texas’s strong economy to loose zoning, and specifically praised Houston’s lack of zoning as an engine of economic growth.

On the Democratic side, New York City Mayor Bill de Blasio offered tepid support for the bill, saying that he expected the increased pace of construction to create jobs and affordable housing in the city, but added that the city would maintain its rent stabilization program. New York housing advocates were involved in obtaining necessary bipartisan support for the bill, and the city’s all-Democratic Congressional delegation is planning to vote for it, with the exceptions of Reps. Carolyn Maloney and Joseph Crowley. Crowley said in a statement that “the city’s planning laws are a cornerstone of neighborhood protection, and it’s hypocritical that the Republican Party, which claims it supports states’ rights, uses the federal government’s power so blatantly when it suits its needs.”

In San Francisco, opponents took to the street, protesting in front of the office of Senator Dianne Feinstein, the most prominent Senate Democrat to support HOBOR, with signs saying “gentrification = violence” and “the developer’s bill of rights.” A group of protesters attacked a shuttle bus ready to leave for Silicon Valley; the leaders of the main group of the protesters disclaimed the attack, and blamed agents provocateurs, but added that destruction of property is different from violent crime and that to compare the two is itself a form of violence.

On the ideological right, reactions are mixed. National Review has written in favor of the bill, while Reason continues to reject it. Joel Kotkin has editorialized that the bill “paves the way toward high-rises that Americans continue to reject.” Tea Party support is split, but largely negative; several groups have vowed to sue, connecting Democratic support with Agenda 21, the UN position paper encouraging more urbanization and restrictions on suburban sprawl. Senator Ted Cruz threatened to filibuster the bill, and openly called for a constitutional challenge. In contrast, Senator Marco Rubio (R-Florida) plans to vote for the bill. In his statement, Rubio pointed to redevelopment in Miami as “affordable housing provided by the free market without government subsidies paid by tax money” and welcomed Democratic support.

All around the nation, municipalities, business groups, homeowners, landlords, and tenants are preparing for the entry of the bill into force, which is scheduled for this September 1st. New York, San Francisco, Houston, and Chicago have all already written draft planning laws designed to comply with HOBOR restrictions, but city planners are still debating how to adapt to a situation without zoning rules to shape urban growth.

Several real estate companies are planning new skyscrapers in central business districts of multiple cities. In Washington, The Related Companies is planning a 1,330 foot tall, 4.3 million square foot tower in Farragut. In New York, Harry Macklowe, Forest City Enterprises, and Durst Organization are all expected to race to develop the tallest skyscraper in the city, in the East Midtown area; real estate analysts speaking on background expect towers exceeding 2,000 feet in pinnacle height, to overtake One World Trade Center, but closer to 1,500 feet in roof height.

Outside city centers, development is slower, but analysts expect it to accelerate in the coming years. Facebook has already announced an expansion of its campus as well as the construction of apartment buildings in its home city of Menlo Park, California, as well as Atherton and Palo Alto, to house its growing workforce. However, when asked if this trend means less demand in San Francisco and less demand for tech shuttles, a senior Facebook human resources manager speaking on condition of anonymity said, “Most of our new hires still prefer to live in San Francisco, so we may end up seeing more commuters from the city, at the expense of the East Bay.”

Ultimately, analysts agree, it is difficult to gauge the long-term effect of HOBOR this early. However, as an early indication that there would be a move to established business districts, stocks of publicly-traded companies involved in purpose-made redevelopment districts, such as the Boston Seaport and New York’s Hudson Yards, are down by an average of 3% since Boehner announced that he had secured support for the bill, whereas those of other major developers have been sharply rising, by 2-15%. But when asked whether they will scale back their plans, officials in Boston have replied negatively, and have even suggested a $2 billion Silver Line expansion to serve the Seaport.

Posted in Development, Politics and Society, Urbanism | 13 Comments