Category: New York

Mixing Circumferential and Radial Transit in the Other Direction

Two years ago, I wrote a post criticizing subway lines that mix radial and circumferential elements. These lines, for examples Shanghai Metro Lines 3 and 6 and New York’s G train before 2001, contain long radial segments, going from an outlying neighborhood toward city center, but then switch to circumferential mode, avoiding city center and instead serving secondary nodes. Such lines do not get high ridership, because they fail at either radial or circumferential transit. Recently, I was challenged in comments about my support for a mixed line that goes in the other direction: circumferential on the outside, radial on the inside. I would like to talk more about such lines.

Consider the following diagram of a subway system:

subwaydiagram

The city is shown in light gray, with its center in dark gray. There are five subway lines: the red and blue lines are straightforward radials, the green line is a straightforward circumferential, the yellow line mixes radial and circumferential as criticized in my previous post, the pink line mixes radial and circumferential in the other manner, which I will describe in this post.

The reason the yellow line is going to underperform in this system is that it fails as a radial: it does not go to city center, which has the largest concentration of destinations for transit users. People who have equal access to the red and yellow lines, north and south of city center, are much likelier to choose the red line, which takes them where they want to go. The green line fails as a radial too, but has the positive features of a circumferential: it only serves relatively nearby neighborhoods, which are likely to be denser and produce more riders per unit length; it connects to every line in the system; it allows people to connect between two radial lines without going through the congested city center; it has no dominant direction at the peak, so trains are unlikely to be full in the peak direction and empty in the reverse-peak direction. The yellow line has none of these features, unless one wants to connect between the western legs of the blue and pink lines.

The pink line still works as a radial. Its northeastern leg is a straightforward radial, but even its southwestern leg  works as a radial for people who live west of the yellow line and wish to commute to city center. In this way, it is not truly a mixture of radial and circumferential elements the way the yellow line is, but is simply a radial with a circumferential element tacked on at the end.

Whether the pink line’s circumferential tail works must be evaluated against two alternatives: build nothing, and build a radial leg. This is because in an incrementally-built transit system, the radial parts of the line are typically built first, and the circumferential tail is tacked on as a later extension. In the no-build case, the pink line’s southwestern leg would simply be shorter than the other radial legs in this system. In the radial case, the pink line’s southwestern leg would look symmetric with the northeastern leg. This depends on the following factors:

  1. The strength of the radial alternative. If the radial alternative is strong, then this discourages building the circumferential extension, and vice versa. The radial alternative can be weak in several ways: the southwestern quadrant of the city depicted above may be already replete with radial transit and not need more; the population density in the neighborhoods that would be served by the radial option may be low; and the city’s layout may not be the above-depicted perfect circle, so that there is nowhere for the line to turn except sideways.
  2. The strength of the corridor that would be served by the circumferential leg. The leg can never be a complete circle, so it must be evaluated as a rapid transit line on an individual street or corridor. This far out of city center, transit demand on each route is unlikely to be high, but there may well be exceptions, for example if there is a linear secondary CBD. For example, while Seoul Metro Line 2 is fully circumferential, one of its segments follows a Tehran Avenue, a major street in Gangnam with high transit demand, which would justify a subway even if it weren’t part of a large circle.
  3. The strength of the circumferential transit demand from the end of the potential circumferential extension to the radial segment. In the depicted city, there may be strong demand for east-west transit south of the CBD, and the circumferential pink line is then better at serving it than connecting between the red and yellow lines via the blue line.

The original impetus for this post, as noted at the beginning, is a comment challenging me for my support of an extension of Second Avenue Subway Phase 2, going under 125th Street from the planned terminus at Lexington Avenue to Broadway, with stations at the intersection with each preexisting subway line. I contend that in this case, all three factors above point to a very strong circumferential extension. In order:

  1. The radial alternative is to extend Second Avenue Subway to the north, to the Bronx, presumably under Third Avenue, but according to some railfans also under University Avenue. This is problematic, for three reasons. First, the Bronx already has many north-south lines feeding into Manhattan trunk lines, with mediocre ridership. The Manhattan trunk lines are overloaded, but mostly with traffic coming from the Upper East and West Sides, Harlem, and Washington Heights. Second, Third Avenue is close to the Harlem Line, which could be used for local transit if fares and schedules are integrated with the subways and buses. And third, the plan for Second Avenue Subway is for the line to turn west at 125th toward Lexington, since 125th and Second is not as compelling a destination, and this makes it easier to extend the line to the west than to the north.
  2. 125th Street is a very busy street, and acts as the main street of Harlem. Transit demand is high: four bus routes use the street, with a total of 32,630 boardings per weekday on 125th Street, exclusive of other segments of those routes. This count misses people who board elsewhere and get off on 125th, but conversely assigns people who board on 125th and get off elsewhere to this street and not the other segment. But with this caveat in mind, this points to about 11,000 weekday riders per route-km, ahead of New York’s busiest bus per unit length (the M86, with about 7,000), and not far behind the subway average (15,000). This is despite the fact that, in my experience going between Columbia and the Metro-North station at Park Avenue, those buses are not faster than walking.
  3. East-west transit in Uptown Manhattan consists of Pokey-winning crosstown buses; the 125th Street buses are as slow on 125th. An underrated feature of Second Avenue Subway Phase 1 is that it will soon enable a two-seat subway ride from the Upper East Side to the Upper West Side, West Harlem, and Washington Heights. However, this option will require connecting at Times Square, and is useful mainly for people in the southern areas of the Upper East Side connecting to the 1/2/3 rather than to the A/B/C/D. A two-seat ride based on going up Second Avenue to 125th Street and thence connecting to the 2/3, A/B/C/D, or 1 would enable more connections, many without any backtracking. This could have a potential cascading effect on all Uptown east-west buses, and not just those using 125th Street.

Of course, a Second Avenue Subway extension on 125th Street cannot be exactly like the pink line in the diagram above, because a key feature of it is that the circumferential part is not in fact near the outer end of the city. It’s barely 5 km north of the northern edge of Midtown, not even halfway from Midtown to the northern ends of most preexisting north-south subway lines. This is how it can have such high residential and commercial density and strong transit demand. Much farther north, Fordham Road is a very strong bus corridor, with about 4,500 weekday riders per route-km on the Bx12, but this is at much higher speed than in Manhattan, about 13 km/h rather than 5 km/h. An extension of the A east toward the Bronx under Fordham would underperform, because Fordham just doesn’t have that much demand; but 125th does.

The result of this discrepancy is that in a small city, one whose subway system is only about as large as in the diagram, it’s unlikely that such circumferential extensions would work. A radial line built all the way out is going to have as its terminus either a relatively low-density area or an anchor point, such as a commercial center or big housing project, neither of which lends itself to a strong continuous circumferential corridor. A radial line built part of the way to the edge of the city could potentially find a Tehran Avenue or a 125th Street, but if the system is small, with many key outlying neighborhoods still unserved, then it is usually best to keep extending lines outward.

The factors that conspire to make a 125th Street subway extension work are in place precisely because New York already has a large, mature subway network, in which Second Avenue Subway is a relief line. Certainly the projected demand on Second Avenue is very high, but the East Side is already served by a north-south subway 500-600 meters to the west of this line; it’s being built because this subway is overcrowded, not because the East Side has no access. This means that there’s more leeway with choosing what to do with the line once it reaches Harlem – after all, the Bronx subways are not overcrowded, and do not need relief.

Whereas mixed lines like the above-depicted yellow line are always bad transit, mixed lines like the pink line, in which the circumferential part is farther out than the radial part, are potentially an option for large cities that already have many rapid transit lines. They are especially useful for providing connections between closely parallel radial lines when other crosstown transit options are slow, and should be considered as extensions for relief lines, provided the radial lines farther out do not need relief as well.

What are the Strong Tramway Corridors?

Note on definitions: for the purposes of this post, a tramway is a light rail line that runs predominantly on streets, interfacing with cross-traffic even if it has signal priority. It can be a legacy streetcar in mixed traffic, or a newer light rail line running on dedicated lanes. It is distinguished from lines that have substantial grade-separated segments, including subway-surface lines, where these segments are in city center while the suburban segments are in tramway mode, and tram-trains and most North American light rail lines, where these segments are in the suburbs while the city-center segments are in tramway mode.

Intermediate in capacity between the surface bus and the rapid transit train is the tram. Running on the street, perhaps with signal priority but without the absolute priority that mainline trains have at grade crossings, trams are still surface transit, but feature better ride quality, generally higher capacity in terms of vehicles per hour, and generally bigger vehicles. A number of cities have been building such transit in recent years, most notably Paris, which has been making the rounds on the Transit Center for having almost a million daily riders on its system. The Transit Center gives various recommendations based on Paris’s success, but those recommendations – frequency, fare integration, good transfers – say very little about where a city should be building tramway lines. In this post, I am going to sketch features of good corridors for tramways.

1. Tramways are surface transit

There are various features that make for good surface transit routes. Jarrett Walker, who has extensive experience in bus network redesigns, outlined some of them in a network design document he collaborated on for TransLink. These include high density along the route, relatively balanced demand in both directions, and the potential for a strong everywhere-to-everywhere grid. Additional important features of strong bus routes: a single street with few twists, since turns slow down surface vehicles a lot, and swerving to reach major destinations is often cumbersome; and a wide street, since in practice few cities will give transit dedicated lanes if there’s not enough room for cars as well. These rules do not apply to subways, which can zigzag between different streets or carve a new alignment. However, they do apply to tramways.

2. The strongest bus corridors are in most need of investment

In a city where the buses that can support high frequency already are frequent, the highest potential for extra ridership is on routes that are already strong. Imagine a bus that averages 15 km/h: replacing it with a 20 km/h tram that provides a smoother and more reliable ride has benefits in rough proportion to existing bus ridership. Since both buses and trams are surface transit and follow the same rules, it’s unlikely that there are routes that would make good trams but poor buses. This is in stark contrast with subways, where a potentially strong corridor may not have a continuous surface right-of-way for high bus ridership. On the surface, this corridor could not succeed as either a bus or a tram. This is a specification of the BMT’s all four concept (bus, trolleybus, tramway, subway), in which the four modes work in complement, and the busiest routes in each category are upgraded to the next based on a tradeoff between construction costs and operating costs.

3. In a city with subways, the tramways should be placed on routes that would make poor subway corridors

It goes without saying that tramways should not duplicate subways. But more than that, if a bus route is so strong that it’s a potential subway extension, it should not be turned into a tram. At first pass, this may look like the best bus routes to be turned into trams are not quite the busiest, but the next tier of busier buses. However, this has to do not just with ridership, but also layout relative to the subway system. The subway is almost invariably radial, so strong buses that make easy radials or branches of radials would be strong subway routes, while circumferential buses would not. A radial bus may also turn out to be a poor subway route, if it happens to point in a direction where a subway wouldn’t be a good fit, but this is less likely.

4. A connected network is beneficial, but not required

Ideally, all light rail routes – not just tramways, but also subway-surface routes and tram-trains if they exist – should form a connected graph, with track connections, to enable maximum flexibility in yard placement and reduce the required spare ratio. However, this is not a requirement. Large, busy systems in particular may economically have a yard serving just 1-2 lines, in which case the value of connectedness decreases. In conjunction with point #3, cities with large radial subway networks may have disconnected circumferential tramways, including Paris.

5. When there’s a choice between several tramways and a subway, tramways work better when there’s no dominant route

The construction cost of a subway, in developed countries that are not the US, is $100-300 million per km, with outliers outside the range in both directions. The construction cost of a tramway in the same countries is $15-50 million per km, again, with outliers. The choice of whether to build one subway or six tramways depends on how busy the strongest route is relative to the next five routes. If two strong bus routes are closely parallel, then both should be reckoned together for subway ridership estimates (and to some extent also for tram ridership), since people walk longer to better service, in this case a fast subway rather than a slow bus. Another consideration, more about construction costs than ridership, is whether there exists a good right-of-way for the subway, perhaps an abandoned or low-ridership commuter line that can be converted, that would make it possible to limit tunneling.

Examples

Boston has few long, wide roads; Massachusetts Avenue is one of very few exceptions. Downtown Boston and the surrounding neighborhoods have very narrow streets, which is why the Boston bus network is sparse downtown – the buses feed outlying subway stations, or stop at the edge of the central business district at Haymarket, and almost never enter the downtown core. Because of the Green Line, some strong radial routes, such as the Washington Street half of the Silver Line, and the 23 bus on Blue Hill Avenue, are naturally good extensions of the subway-surface network; they’d make good light rail, but not all-surface tramways.

In strongly gridded cities, including Chicago, Vancouver, Toronto, and Los Angeles, it doesn’t make too much sense to build individual tramways; instead, the entire frequent bus grid could be so upgraded, or possibly just the lines that are perpendicular to the rapid transit system in Chicago and Toronto. Unfortunately, this runs into high construction costs, which leads to questions of priorities: build an expansive light rail network, or extend a few subway lines.

I believe Los Angeles and Vancouver are doing right in choosing to prioritize subways on their strongest corridors. Vancouver in particular is an extreme example of point #5 pointing toward a subway, with 80,000 weekday riders on Broadway and another 40,000 on the routes interlining on 4th Avenue 500 meters away (not all on 4th, as two of the four 4th Avenue routes have substantial tails elsewhere), compared with 110,000 on the next five routes combined; Vancouver also seems to have an unusually low subway-to-tram cost ratio, only about 2.7 rather than 6. Los Angeles has a less extreme version of point #5, but Wilshire and very close-by routes dominate east-west traffic, and can also easily feed into the existing subway.

In Chicago, the circumferential nature of the top bus routes – north-south west of the Loop, east-west north and south of it – makes an L extension infeasible, so from point #3, any solution has to involve surface transit. The current plan is dedicated bus lanes. In Toronto this decision is more difficult, and acrid debates between a mostly-surface option and an all-underground option led to the latter choice, influenced by Rob Ford’s unwillingness to take road lanes from cars; right now Toronto is building one subway line (update: it’s mixed subway-surface), under Eglinton, and one tramway, on Finch West.

New York

In New York, Bill de Blasio proposed a tram route near the Brooklyn and Queens waterfront earlier this year; see background articles here and here. This route is ill-suited for the technology proposed, or for any significant investment. The buses along the waterfront are all quite weak. In both Brooklyn and Queens, the busiest buses are in the interior, some going perpendicular to the subway, such as the Q44 on Main Street and B35 on Church, and some serving radial routes that have long been planned to be subway extensions, namely the B46 on Utica and B44 on Nostrand. Select Bus Service investments have targeted these routes, and now the Q44, B44, and most recently the B46 all have SBS features.

Another weakness of the proposed route is that it subtly combines circumferential and radial service; see here for why this is poor practice. While the line is for the most part straight, the north-south segment in Queens is essentially radial, going from Astoria to Long Island City, parallel to the N/Q subways, before switching to circumferential between Long Island City and Downtown Brooklyn. South of Downtown Brooklyn it becomes radial again, connecting to Red Hook and Sunset Park. Riders in Astoria going south are mostly interested in continuing toward Manhattan and not toward Brooklyn; riders in Sunset Park and Red Hook going north would first of all follow different routes (Sunset Park already has the N and R subways and has no use for a detour through Red Hook), and second of all be more interested in going to Manhattan than to Williamsburg and points north.

While de Blasio’s proposal is bad transit, there are routes in New York that could make strong tramways. None of them is on the city’s redevelopment agenda, based on the principle that US cities almost never invest in low- and lower-middle-income neighborhoods except when they are about to gentrify, but the bus ridership there is solid, even though the buses crawl.

The busiest routes in New York are the M15 on 1st and 2nd Avenues in Manhattan, the B46, and the Bx12 on Fordham Road; each has been the single busiest in one of the last few years, but usually the M15 is first. The first two are strong subway routes: the first phase of Second Avenue Subway will soon open, and the rest will be built when the city can find multiple billions per kilometer for them; Utica is also a strong route, and de Blasio proposed it last year before abandoning the idea. But Fordham satisfies point #4 perfectly: it is circumferential, and can only realistically extend the A train, already the system’s longest route, with a mismatch in potential ridership between the core radial segment and what a Fordham subway would get. The Bx12 was the first route to be turned into SBS, and is either the strongest potential tramway in the city, or one of the few strongest.

Going further down the list, we should eliminate the strong Brooklyn routes, except the B41 on Flatbush. The B44 is also a potential subway extension, and the three busiest circumferentials – the B6, B35, and B82 – all parallel the Triboro right-of-way, which by point #5 is a superior project to building multiple light rail lines. The busiest bus in Queens, the Q58, has a long segment between Queens and Brooklyn, about half its total length, that would be obviated by Triboro as well.

The B41 could be a tramway going between City Hall and Kings Plaza, using two dedicated lanes of the Brooklyn Bridge. In that case, the line would effectively act as subway-surface, or more accurately elevated-surface: a surface segment in Brooklyn, a grade-separated segment between Manhattan and Brooklyn. Subway-surface lines should branch, as all current examples do (e.g. Boston Green Line, Muni Metro, Frankfurt U-Bahn), because the subway component has much higher capacity than the surface components. This suggests one or two additional routes in Brooklyn, which do not have strong buses, but may turn into strong tramways because of the fast connection across the river to Manhattan. The first is toward Red Hook, which is not served by the subway and cut off from the rest of the city by the Gowanus Expressway. Unfortunately, there is no really strong corridor for it – the streets are not very wide, and the best for intermediate ridership in Cobble Hill and Carroll Gardens require additional twists to get into the core of Red Hook. Court Street might be the best compromise, but is annoyingly a block away from the F/G trains, almost but not quite meeting for a transfer. The second possible route is along Flushing Avenue toward the Navy Yard; it’s not a strong bus by itself, but the possibility of direct service to Manhattan, if a Flatbush tramway preexists, may justify it.

In the Bronx and Queens, a more conventional network is called for. The Bronx in particular has several strong bus lines forming a good grid, in addition to the Bx12. The east-west routes cannot possibly be made into subway extensions, while the north-south ones have nowhere to go to in Manhattan except possibly a Second Avenue Subway extension, and even that is doubtful (if there’s money to extend Second Avenue Subway north, it should instead go west under 125th Street). A light rail grid could consist of the Bx12 as outlined above, a Tremont line acting as a compromise between the Bx36 and Bx40/42 feeding into Manhattan on 181st Street, a 161st/163rd Street route going into Manhattan on 155th Street replacing the Bx6, a Southern/Manhattan 145th Street route along the Bx19, a Third Avenue route along the Bx15, and a Grand Concourse route along the Bx1/2. Grand Concourse has a subway, but the Bx1/2 nonetheless currently ranks 5th in the city in weekday ridership, and the street is so wide that it’s a good candidate for light rail. Update: a Webster Avenue route along the Bx41 is also feasible, I just forgot it when writing this post.

In Queens, there’s less room for a grid. Main Street is a strong route, connecting to Tremont in the Bronx via the Whitestone Bridge, as the Q44 SBS already does today. A second route between Flushing and Jamaica, on Kissena and Parsons, could also get a tramway. These two routes are uniquely bad subways, since they connect two busy subway lines, both of which could be extended past their termini outward. The main route on Kissena, the Q25, and another route slightly farther east, the Q65, rank 3rd and 2nd among the MTA buses, separate from the New York City Transit buses, with about 20,000 weekday riders each; they also continue north to College Point, which could get a tramway, or perhaps even a subway extension of the 7, depending on whether there are plans to redevelop the Flushing Airport site.

If there is not enough ridership on both Kissena and Main, then only Main should be turned into light rail. More potential corridors include the Q46 on Union Turnpike and the Q10 on Lefferts going to JFK (the busiest MTA bus). Unfortunately, Queens buses tend to be on the long side, e.g. the Q27, the borough’s number 3 bus after the Q58 and Q46, is 15 km long; in the Bronx the longest, Tremont, would be 13 km, cobbled out of busier buses, and most are about 10 km. The Q44 is even longer, at 20 km; light rail is only justified there because of extra local ridership coming from the Q20 local and from the fact that the Queens-Bronx segment over the bridge would be rapid transit. Even then, the tramway may only be justified from Flushing south.

I don’t want to make recommendations for priorities and an exact fantasy map in New York, as those depend on construction costs and the available budget. Fordham and Main Street are most likely the two strongest initial choices. Judging by the cost estimate for de Blasio’s waterfront proposal, tramways in New York are about $60-70 million per km, which in an inverse of the situation in Vancouver leads to an unusually high subway : tram cost ratio, 25 if we take the Manhattan subway extensions (Second Avenue and the 7 extension) as our examples, probably less but not much less if we look at a hypothetical Utica subway. This should bias New York rail extensions toward surface transit.

De Blasio proposed $1.5 billion for about 25 km of tramway on the waterfront. The waterfront idea is bad, and money can and should go elsewhere; 25 km is slightly longer than the combined length of the Bx12 and the B46 from Flushing south. Those two together could be the start of a program to bring surface rail back to New York, using the same routing reasoning that made Paris’s program so successful. Using ridership on the existing buses and adjusting upward for rail bias, initial ridership on those two lines combined should be higher than 100,000 per day, and with more lines and a bigger network, fast multiplication of overall traffic can be expected.

The RPA Continues to Push for the Flawed Crossboro Plan

As the Regional Plan Association continues to work on its Fourth Regional Plan, expected to be published next year, it’s releasing various components of the upcoming agenda. One, an update from the Third Regional Plan from 1996, is a line variously called Triboro or Crossboro. In the third plan, Triboro RX was meant to be a circumferential subway line, taking over existing abandoned and low-traffic freight rail rights-of-way in Brooklyn, Queens, and the South Bronx, terminating at Yankee Stadium via a short tunnel. It was never seriously proposed by any political actor, but was briefly mentioned positively by then-MTA chair Lee Sander in 2008, and negatively mentioned by Christine Quinn, who called for a bus line along a parallel alignment in her mayoral campaign in 2013. In 2014, Penn Design proposed a variant it calls Crossboro, which differs from the original Triboro proposal in two ways: first, the stop spacing is much wider, and second, instead of the short tunnel to Yankee Stadium, it continues northeast along the Northeast Corridor, making four stops in the Bronx as in the proposed Metro-North Penn Station Access plan. Crossboro is an inferior proposal, and unfortunately, the fourth plan’s Triboro proposal downgrades it from the original alignment to Crossboro.

As I explained a year and a half ago, specifically in the context of Crossboro, it is poor planning to run train service that begins as a radial and then becomes as a circumferential instead of continuing into the center. The route of Crossboro, and now also the Triboro plan, involves going from the North Bronx to the south in the direction of Manhattan, but then turning southeast toward Queens and Brooklyn, rather than continuing to Manhattan. Briefly, in a system with radial and circumferential routes (as opposed to a grid), circumferential service is the most effective when it connects to secondary centers, and has easy transfers to every radial. If a line runs as a radial and then switches to circumferential, its ability to connect to other radials is compromised, making it a weaker circumferential; nor could it ever be even a half-decent radial without service to the CBD. Lines with such service pattern, such as Line 3 in Shanghai and the G train in New York until 2001, tend to underperform.

However, the stop spacing deserves to be treated separately. Under both Crossboro and the RPA’s new version of Triboro, there are too few stops for the line to be useful as an urban rail service. I’m going to ignore the connection between Queens and the Bronx, which as a major water crossing can be expected to have a long nonstop segment, and talk first about the Bronx, and then about Queens and Brooklyn.

In the Bronx, there are four stops in 10 km, starting counting from where the bridge toward Queens begins to rise. This may be reasonable for a commuter rail service with local service extending well past city limits (to New Rochelle or even Stamford), but when it terminates within the city, it’s too far for people to be able to walk to it. The proposed stops also miss the Bronx’s most important bus route, the Bx12 on Fordham Road, which in 2015 became the city’s busiest single bus route. A stop on the Pelham Parkway, the continuation of Fordham in the East Bronx, would be a massive travel time improvement over trying to reroute the Bx12 to meet a train station near Coop City, the proposed northern terminus of both Crossboro and the new Triboro. Conversely, it would delay few other passengers, by very little, since there would only be one further stop north. The result of the proposed stopping pattern is then that most people living near the line would not be able to either walk to it or take a frequent bus.

In Queens and Brooklyn, starting from Astoria and going south, the route is 26 km long, and the new Triboro makes 17 stops. The average interstation, 1.5 km, is noticeably above the international subway average, and is especially high for New York, whose stop spacing is near the low end globally. The original version had 29 stops over the same distance, and one more stop between Astoria and the bridge. Unlike in the Bronx, in Brooklyn all streets hosting major radial routes get subway stops. However, long stretches of the route get no stops. The stop spacing is not uniform – from Northern Boulevard to Grand Avenue there’s a stretch with 4 stops in 2.8 km (counting both ends), but from Astoria-Ditmars to Northern Boulevard there’s a 2.5 km nonstop service, skipping Astoria Boulevard and Steinway, passing through a medium-density neighborhood south of the Grand Central Parkway with mediocre subway access. A stop at Astoria Boulevard and Steinway is obligatory, and probably also one between Astoria and Northern, around 49th Street. To the south of Grand Avenue, the proposal calls for a 2.1 km nonstop segment to the M terminus at Metropolitan Avenue, skipping Middle Village, which is cut off from Grand by the Long Island Expressway and from the M by cemeteries. An additional stop in the middle of this segment, at Eliot Avenue, is required.

In Brooklyn, the route runs express next to the L train, splitting the difference between serving Broadway Junction (with a connection to the A/C) and Atlantic Avenue (with a connection to the LIRR): the RPA’s diagram depicts a station at Atlantic Avenue but calls it Broadway Junction. Farther south, it makes a few stops on an arc going southwest toward southern Brooklyn; the stops are all defensible, and the stop spacing could potentially work, but there are still potential missing locations, and some nonstop segments in the 1.7 km area. For example, it goes nonstop between Utica and Nostrand Avenues, a distance of 1.7 km, with a good location for an interpolating station right in the middle, at Albany Avenue. From Nostrand west, it stops at a transfer to every subway line, except the R. In that segment, one more stop could be added, between the F and the D/N; the reason is that the gap between these two lines is 1.8 km, and moreover the right-of-way slices diagonally through the street grid, so that travel time from the middle to either stop is longer along the street network. However, overall, this is not why I dislike the route. Finally, at the western end, the route is especially egregious. The right-of-way is parallel to the N train, but then awkwardly misses 59th Street, where the N veers north and starts going toward Manhattan. The original proposal had a stop several blocks away from 59th, with a long transfer to the R (and N); this one drops it, so there is no R transfer in Brooklyn – trains express from the D/N transfer at New Utrecht to the terminus at Brooklyn Army Terminal, where there is very little development. There are practically no through-riders who would be inconvenienced by adding the extra two N stops in between. In contrast, due to the low frequency of the N (it comes every 10 minutes off-peak), making passengers originating in those stations who wish to ride Triboro transfer would add considerably to their travel time.

A route like Triboro has an inherent problem in deciding what stop spacing to use, because as a circumferential, it is intended to be used on a large variety of origin-destination pairs. For passengers who intend to connect between two outer radial legs more quickly than they could if they transferred in Manhattan, the wider stop spacing, emphasizing subway connections, is better. However, the mixed radial-circumferential nature of the new Triboro makes this a losing proposition: there’s no connection to any subway line in the Bronx except the 6. Moreover, in Brooklyn, there’s no connection in Brooklyn to the R, and if there’s a connection to the A/C, it involves walking several hundred meters from what on the L is a separate subway stop.

In contrast, for passengers whose origins are along the line, narrower stop spacing works better, because they’re unlikely to cluster around the connection points with the radial subway lines. (The line has no compelling destinations, except maybe Jackson Heights and Brooklyn College; in the Bronx, the two most important destinations, the Hub and Yankee Stadium, are respectively close to and on the old Triboro route, but far from the new one.) The aforementioned Astoria/Steinway, Eliot, and Albany, as well as the skipped stations along the L and N routes, all have reasonable numbers of people within walking distance, who have either poor subway access (the first three) or only radial access (the L and N stations).

What’s more, if trains make more stops, the increase in travel time for passengers connecting between two legs is not large compared with the reduced station access time for passengers originating at an intermediate station. The reason is that passengers who connect between two legs are not traveling all the way. The fastest way to get from the West Bronx to southern Brooklyn is to take the D train all the way, or take the 4 to the D; from the 6 train’s shed, the fastest way is to take the 6 and transfer to the N/Q at Canal or the B/D at Broadway/Lafayette. No circumferential service can change that. The benefit of circumferential service is for people who travel short segments: between the Bronx and Queens, or between the 7 or the Queens Boulevard trains and the lines in Brooklyn that aren’t the F. Given high circumferential bus ridership in Brooklyn – two circumferential routes, the B6 and B35, rank 2nd and 4th borough-wide and 4th and 7th citywide, despite averaging maybe 9 km/h – connections between two Brooklyn legs are also likely. For those passengers, making a few more local stops would add very little to travel time. The subway has a total stop penalty of about 45 seconds per station. Of the ten extra stops I list as required – Astoria/Steinway, Eliot, Albany, 59th, four along the L, and two along the N – three (the two on the N and 59th) are basically end stations, and few passengers have any reason to travel over more than five of the rest. In contrast, adding these ten stops would improve the quality of transfers to the R and A/C and provide crucial service to intermediate neighborhoods, especially Middle Village.

Finally, let me make a remark about comparative costs. The original Triboro plan required a short tunnel, between Melrose Metro-North station and Yankee Stadium; the new one does not. However, a single kilometer of new tunnel in the context of a 34 km line is not a major cost driver. The new proposal is actually likely to be more expensive. It is longer because of the segment in the Bronx along the Northeast Corridor, about 40 km in total, and 10 km would be alongside an active rail line. There are plans for increased mainline passenger rail service on the line: Penn Station Access, plus any improvements that may be made to intercity rail. Far from offering opportunities to share costs, such traffic means that any such plan would require four tracks on the entire line and flying junctions to separate trains going to Penn Station from trains going to Brooklyn. Fare collection would be awkward, too – most passengers would transfer to the subway, so subway faregates would be required, but commuter rail has no need for faregates, so sharing stations with Penn Station Access would require some kludge that wouldn’t work well for any mode. Tunneling is expensive in New York, but so is at-grade construction; a kilometer of tunnel in the Bronx is unlikely to cost more than configuring an active rail mainline for a combination of suburban and high-frequency urban service.

The RPA proposes the London Overground as a model, treating the new Triboro as a commuter line offering subway service levels. Everywhere else I’d support this idea. But here, it fails. First, as I explained in a previous post, the routing is an awkward mix of radial and circumferential. But second, the stop spacing only works in the context of a long suburban line feeding city center, and not an urban circumferential line. In the context of an urban line, more stops are needed, to let people walk from more neighborhoods to the train, or take a connecting bus. For the most part, the original Triboro plan, designed around interstations of about 900 meters not counting the water crossing, would work well. Crossboro, and its near-clone the new Triboro, is inferior to it in every respect, and the RPA should jettison it from the Fourth Regional Plan in favor of the old proposal.

Select Bus Service Problems

I recently visited New York. I stayed in Kew Gardens Hills, a neighborhood located between Jamaica and Flushing, just close enough to the subway that it’s plausible to walk but just far enough that this walk is uncomfortable and I preferred to take a bus. The bus route, Main Street, is one of Queens’ busiest (see data here and here). I’ve been calling for investment in it for years, going back to a fantasy spite map I drew so long ago I don’t remember what year it was, and continuing more recently in my post on where New York should and shouldn’t build light rail. Last year, the route did get Select Bus Service, and I took it a few times. The result is not good.

Main Street maintains two bus corridors: the local Q20, and the Select Bus Service Q44. Almost every SBS route is an overlay of a local route and a rapid route; on the local route passengers must board from the front and pay within view of the driver, and on the rapid route passengers must validate a ticket at ticketing machines beforehand and can then board the bus from any stop, with the fare enforced via random checks for ticket receipts. This leads to the following problems, some preventable, some inherent to this setup:

  1. Passengers who can take either the local or the SBS route need to decide in advance whether to validate their tickets at the machines or not, based on whether the next bus is SBS. The resulting last-minute validation delays boarding. After the mayhem caused by the introduction of SBS to the M15, on First and Second Avenues, bus drivers on local routes began to accept the receipts spitted out by the SBS ticketing machines. However, this practice is either inconsistent or not widely-known among occasional bus riders, such as the people I was staying with, who own cars.
  2. The combination of local and limited buses on a medium-frequency route such as Main Street makes it impossible to maintain even headways. Even within each route (Q20 or Q44) I repeatedly saw bunching, but the different speeds of the Q20 and Q44 make bunching between a local and an express inevitable at some point on the route. Off-peak weekday frequency is 10 minutes on the Q20 and 8 on the Q44, which isn’t good enough to justify this split, especially given the bunching within each route; some stations will always be scheduled to have 8-minute service gaps, and in practice could see 15-minute gaps because of the bunching. See more on this problem of locals and rapids on infrequent routes on Human Transit.
  3. The expense of the ticketing machines ($75,000 per stop for a pair of modified MetroCard vending machines and a machine that takes coins) limits how widely they can be installed. Everywhere else where proof-of-payment is used, holders of valid transfers and season passes can just board the train or bus and show their pass to an inspector. This would be especially useful in New York, because the biggest crunch at SBS stops occurs when many passengers arrive at the stop at once, which in turn is the most common where passengers transfer from the subway. The slow process of validating a ticket leads to queues at busy times, and adding more machines is difficult because of their cost.
  4. Stop spacing is never what it should be. Most developed countries have converged on a standard of about 400-500 meters between successive bus stops. North America instead has converged on 200 meters, leading to slow buses that stop too often; see an old Human Transit post on the subject here. The stop spacing on the segment of the Q44 I was using was two stops in 1.7 km, leading to long walks between stops.
  5. On the schedule, the Q44 makes 15 stops in 9.2 km between its origin in Jamaica and Flushing, and takes 42 minutes in the midday off-peak. This is an average speed of 13.1 km/h. In contrast, Vancouver’s limited-stop buses, which average about a stop per kilometer on Broadway and 4th Avenue, average 20 km/h and 30 km/h respectively; the 4th Avenue buses do not have off-board fare collection, but there’s less traffic than on Broadway, and the stoplights give priority to through-traffic, both private and public, over crossing traffic.

The basic problem with New York’s approach to Select Bus Service is that all North American bus rapid transit ultimately descends from Jaime Lerner’s sales pitch of BRT as a cheap subway on tires, at grade. Lerner implemented BRT in Curitiba successfully, in the context of low wages: construction costs appear to only weakly depend on wealth (see e.g. my posts here, here, here, here, and here), but bus driver costs rise with average income, making replacing fifteen bus drivers with one subway driver a crucial money saver in rich cities and an unaffordable luxury in poor ones. North American BRT imitates Latin American BRT’s role as a cheap subway substitute, and ignores the superior usage of bus services in Europe, with which American transit planners do not dialog; there’s no systematic dialog with Latin American planners either, but Lerner has aggressively pitched his ideas to receptive audiences, whereas no comparable figure has pitched European-style reforms to the US.

In cities that think of BRT as a subway substitute, the BRT network will tend to be small, consisting of a few lines only serving the most important corridors, and bundle various features of improved transit together (off-board fare collection, larger vehicles, bus lanes, signal priority). After all, a line can’t be partly a subway and partly a bus. In Bogota, whose BRT system has eclipsed Curitiba and is the world’s largest, the BRT lines run different vehicles from the local lines: local buses have doors opening on the right to the curb, BRT buses have doors opening on the left to a street median bus station, some hybrids have buses with doors on both sides (see photos on Spanish Wikipedia). ITDP, which promotes Latin American-style BRT around the world, has a BRT scoring guideline that awards points to systems that brand their BRT lines separately from the rest of the bus network, as New York does with SBS.

In the European thinking, there’s already an improved quality urban transit service: the subway, or occasionally the tram. The bus is a bus. The biggest difference is that subway networks are smaller than bus networks. Paris and London, both with vast urban rail networks, have a number of subway lines measured in the teens, plus a handful of through-running commuter services; they have hundreds of bus routes. Instead of branding a few buses as special, they invest in the entire bus network, leading to systemwide proof-of-payment in many cities. Bus lanes and signal priority are installed based on demand on an individual segment basis. New York installs bus lanes without regard to local versus SBS status, but retains the special SBS brand, distinguished by off-board fare collection, and only installs it on a per-route basis rather than systemwide.

The other issue, unique to New York, is the ticket receipts. Everywhere else that I know of, bus stops do not have large ticket machines as New York does. Vancouver, which otherwise suffers from the same problem of having just a few special routes (called B-Lines), has no ticket machines at B-Line stops at all: people who have valid transfers or  monthly passes can board at their leisure from any door, while people who don’t pay at the front as on local buses. SBS in contrast does not give passengers the option of paying at the front. In New York, people justify the current system by complaining that the MetroCard is outdated and will be replaced by a smart card any decade now; in reality, systems based on paper tickets (including Vancouver, but also the entire German-speaking world) manage to have proof-of-payment inspections without smartcards. Small devices that can read the MetroCard magnetic stripe are ubiquitous at subway stops, where people can swipe to see how much money they have left.

The right path for New York is to announce that every bus route will have off-board fare collection, regardless of stop spacing. It should also engage in stop consolidation to reduce the interstation to about 400-500 meters, but this is a separate issue from fare collection. Similarly, the question of bus lanes should be entirely divorced from fare collection. There should be no ticketing machines at bus stops of the kind currently used. At most, stops should have validators, similar to the MetroCard readers at subway turnstiles but without the fare barrier. Validators are not expensive: smartcard readers in Singapore are consumer items, available to people for recharging their cards at home via their credit cards for about $40, a far cry from the $75,000 cost in New York today. People with valid transfers or unlimited cards should be able to board without any action, and people without should be able to pay on the bus.

Finally, the split between local and rapid routes should be restricted to the busiest routes, with the highest frequency in the off-peak. Conceivably it should be avoided entirely, in favor of stop consolidation, in order to increase effective frequency and reduce bunching. The city’s single busiest route, the M15, has 7-minute SBS and 8-minute local service in the midday off-peak, and given how slow the local is, it’s enough to tip the scales in favor of walking the entire way if I just miss the bus.

De Blasio Versus Good Transit

In New York, the de Blasio administration has been spending considerable political capital pushing for a $2.5 billion light rail line connecting Astoria and the Brooklyn waterfront south to Sunset Park. There has been a lot of criticism from good transit advocates about implementation – namely, it’s unclear there will be free transfers to the subway and buses, in order to avoid having to share turf with the state-owned MTA – but also of the basic concept, which is not the biggest transit priority in the region, or for matter the twentieth. In comments and on social media, I’ve seen a few wrong arguments made in support of waterfront light rail and similar bad investments over and over, and I’d like to go in some detail into where cities should and should not build such lines.

The principles below are based on various oppositions: first world versus third world, fast versus slow growth, subway versus no subway. I think a good meta-principle is that if the presence of a certain factor is an argument in favor of a specific solution, then its absence should be an argument against that solution. For instance, if high wages are an argument in favor of rail and against bus rapid transit, then low wages should be an argument in favor of bus rapid transit; this principle makes me wonder what Addis Ababa was thinking when it built light rail instead of BRT, while at the same time thinking very little of American cities that make the decision that Addis Ababa should have made. The upshot of the meta-principle is that many of the guidelines that work in New York could work in very different cities, in reverse.

1. New York is a mature first-world city with low population growth; it should build transit exclusively or almost exclusively based on current population and transportation patterns, and not attempt to engage in development-oriented transit. The upzoning the city engages in is too small compared to current population, and cannot justify anything of the magnitude of Vancouver’s Expo Line, which was built simultaneously with Metrotown and the New Westminster offices around the train stations. And even Vancouver cannot reasonably expect the growth rates of various third-world cities with annual population growth rates in the vicinity of 5% and even higher per capita income growth rates.

2. Rail bias is approximately the same on all routes. Routes with many turns and narrow roads have unusually slow buses, but they’ll also have unusually slow surface rail. Rapid transit does have the ability to avoid the extra traffic jams coming from such alignments, and this is especially important in cities where the main street is not the same as the nearby wide boulevard, but this is not what’s under discussion in New York. Yes, de Blasio’s proposed light rail line would get more riders than the buses on segments of the route in question are getting now; the same would be true of any number of light rail routes paralleling the busiest buses in the city.

3. In a city with a subway, the best light rail routes are the ones that don’t make sense as subway extensions. Of the three busiest buses in New York, two make sense as subway lines, so there’s no point building light rail and only later a subway: the M15, on First and Second Avenues, and the B46, on Utica. In contrast, the third route, the Bx12 on Fordham, is crosstown, and cannot reasonably be an extension of any subway line, so it would be a strong light rail corridor. The same can be said of Main Street in Queens, between Flushing and Jamaica; and 14th and 86th Streets in Manhattan, where the M14 and M86 are the busiest surface routes in the US in terms of riders per kilometer, well ahead of the Boston Green Line (they both have about 8,000, and the Green Line 6,000). Of note, 14th Street already hosts the L, but a branch going on Avenue D is far from the subway, and the street is so well-trafficked that despite slower-than-walking bus speeds, that arguably light rail makes sense there even with the subway.

4. As soon as a project is judged as not a top priority, it’s best to think of how useful it is once the top priorities are built. In the case of New York, let us zoom in on Brooklyn’s top two circumferential buses, the B4 B6 and B35. Triboro RX is a higher priority than turning these routes into light rail, and once it’s in place, how much demand is there really going to be for them? It would be faster to take the subway and connect to Triboro, except at very short distances, where speeding up surface traffic is less useful.

In New York, excluding the somewhat special cases of 14th and 86th Streets, I’d say there are three light rail networks that make sense: one in the Bronx, one in Brooklyn, and one in Queens. The Bronx network involves taking the borough’s most frequent buses and turning them into light rail routes: the Bx12 on Fordham as noted above, but also the Bx1/2 on Grand Concourse (like 14th Street, hosting both a subway and a very busy bus route), the Bx19 on Southern and 145th, the Bx15 on Third, and a route on Tremont combining the Bx36 and the Bx40/42. These routes roughly form a grid, each has at least 30,000 weekday riders, and none is SBS except the Bx12. In this case, light rail should really be thought of as the next step after publishing a frequent grid map based on these routes and equipping the entire city bus fleet with off-board fare collection.

In Queens, there’s less room for a grid – the borough has street grids, but it really is based on several old centers, with major roads connecting them. The strongest routes are the ones that cannot reasonably be subway extensions, because they’re too circumferential; in turn, the strongest subway extension, i.e. Northern, is not a major bus route, because it’s close enough to the Queens Boulevard subway that people instead take the subway, which is overcrowded. Of the strong surface transit routes, the corridor with the highest ridership takes in several bus routes between Flushing and Jamaica; Main Street is the most important route, but potentially there’s room both there and on the second route, Kissena-Parsons. Other potential light rail routes radiate from Flushing and Jamaica, in directions not well-served by the subway and the LIRR, or even west on Queens Boulevard to help serve the gap in subway coverage between the 7 and the Queens Boulevard Line and relieve the subway lines.

Brooklyn is the most interesting. The main missing pieces in subway coverage in Brooklyn are good subway extensions: Triboro, Utica, Nostrand. With those in place, the only real gaps are Flatbush, and some route serving Red Hook. Possibly service to the Navy Yard may be desirable, but the area is not very well-developed right now, and the buses serving it have low ridership. Those are two or three routes radiating out of the same center in Downtown Brooklyn, which makes it tempting to not only build light rail on them, but also send it over the Brooklyn Bridge to City Hall. This would be like the subway-surface lines in Boston and San Francisco, where one underground trunk splits into several at-grade branches, except that in this case the trunk would be elevated rather than underground. It’s not worth building by itself, but the possibility of leveraging Brooklyn Bridge lanes for several light rail lines may make the ridership per unit of cost pencil out.

The common factor to all of these possibilities is that they are not meant for signature development areas that the city is targeting. Maybe there’s some new development there, but the focus is on improving public transit services to existing residents, who either are riding very slow buses or have given up on public transit because of the inconvenience. It can be marketed as an improvement in transit, but cannot really be sold as part of a plan to revitalize the Brooklyn waterfront. It’s about day-to-day governing, whereas the administration is interested in urban renewal schemes, which are rarely good transit.

Why Costs Matter

Stockholm is currently expanding its transit system, with about 19 kilometers of subway extension, and another 6 kilometers of a commuter rail tunnel taking regional traffic off the at-capacity mainline. The subway extension, excluding rolling stock acquisition, costs about $2.1 billion, and the commuter rail extension $1.8 billion.

The US is currently building five subways: Second Avenue Subway Phase 1 (2.8 km, $4.6 billion), East Side Access (2.2 km, $10 billion), the first phase of the Wilshire subway (6.3 km, $2.8 billion), the Regional Connector (3.1 km, $1.4 billion), U-Link (5 km, $1.8 billion). Two more projects are partially underground: the Crenshaw/LAX Line, a total of 13.7 km of which 4.7 are underground, at a total cost of $2.1 billion, and the Warm Springs BART extension, a total of 8.6 km of which 1.6 are underground, at a total cost of $900 million. (Update 2/1: the Central Subway is $1.6 billion for 2.8 km. Thanks to Joel for pointing out that I forgot about it.)

The first observation is that Sweden has just 700 meters 3.5 km of subway under construction less than the US under construction, despite a vast gap in not only population but also current transit usage. Stockholm may have twice the per capita rail ridership of New York, but it’s still a small city, the size of Indianapolis, Baltimore, Portland, or Charlotte; 450 million annual rail trips is impressive for a city of its size, but the US combined has more than 3 billion. This relates to differences in costs: the amount of money Sweden is putting into heavy rail infrastructure is $3.9 billion, vs. $23.6 billion $25.2 billion among the seven eight US projects, which approaches the ratio of national subway and commuter rail ridership levels.

The second observation is that the US spending is not really proportional to current rail ridership. Two thirds of the spending is in New York, as is two thirds of US rail ridership, but nearly everything else is in Los Angeles, which takes in a majority of current subway construction route-length. Los Angeles is a progressive city and wants better public transit, but the same is true in many of the six major US transit cities – New York, Washington, San Francisco, Chicago, Boston, and Philadelphia. And yet, of those six, only New York and San Francisco are building urban subways (BART’s one mile of tunnel is in a suburb, under a park).

The difference is that Los Angeles builds subways at $400-450 million per km in the city core (less in future phases of the Wilshire subway), whereas in most of the US, lines are either more expensive or more peripheral. Boston, the Bay Area, and Washington are expanding their rapid transit networks, but largely above-ground or in a trench, and only outside the core. Boston’s Green Line Extension is in a trench, but has had major budget overruns and is currently on the high side for a full subway ($3 billion for 6.9 km), and the MBTA is even putting canceling the project on the table due to the cost. Washington’s Silver Line Phase 2 is 18.5 km and $2.7 billion, in a highway median through the Northern Virginia suburbs. BART’s Warm Springs extension is about $100 million per km, which is not outrageously high, but the next extension of the line south, to Berryessa, is $2.3 billion for 16 km, all above ground.

Let us now stay on the North American West Coast, but go north, to Vancouver. Vancouver’s construction costs are reasonable: the cost projections for the Broadway subway (C$2.7 billion ex-vehicles, PDF-p. 95) are acceptable relative to route-length (12.4 km, PDF-p. 62) and very good relative to projected ridership (320,000 per weekday, PDF-p. 168). Judging by the costs of the Evergreen and Canada Lines, and the ridership evolution of the Canada Line, these projections seem realistic. And yet, in a May 2015 referendum about funding half the line as well as many other transit projects, 62% of the region’s voters, including a bare majority in Vancouver proper, voted no.

The referendum’s result was not a shock. In the few months before the vote, the polls predicted a large, growing no vote. Already in February, the Tyee was already comparing Vancouver negatively with Stockholm, and noting that TransLink’s regional governance structure was unusual, saying the referendum was designed to fail. This is not 100% accurate: in 2014, polls were giving the yes side a majority. The deterioration began around the end of 2014 or beginning of 2015: from 52-39 in December to 46-42 in January, to 27-61 in March. The top reason cited by no voters was that they didn’t trust TransLink to spend the money well.

This cannot be divorced from Vancouver’s Compass Card debacle: plans to replace paper tickets and SkyTrain’s proof-of-payment system with a regionwide smartcard, called Compass, and faregates on SkyTrain, were delayed and run over budget. The faregates aren’t even saving money, since TransLink has to pay an operating fee to vendor Cubic that’s higher than the estimated savings from reduced fare evasion. The height of the scandal was in 2014, but it exploded in early 2015, when TransLink replaced its manager amidst growing criticism. The referendum would probably have been a success a year earlier; it was scheduled in what turned out to be a bad period for TransLink.

The importance of the Vancouver example is that construction costs are not everything. Transit agencies need to get a lot of things right, and in some cases, the effects are quite random. (Los Angeles, too, had a difficult rollout of a Cubic-run faregate system.) The three key principles here are, then:

1. Absolute costs matter. They may not directly affect people’s perceptions of whether construction is too expensive. But when legislators have to find money for a new public transit project, they have some intuitive idea of its benefits, give or take a factor of perhaps 2. Gateway is being funded, even though with the latest cost overrun (to $23.9 billion) the benefit-cost ratio in my estimation is about 1/3, but this involved extensive lobbying by Amtrak, lying both to Congress and to itself that it is a necessary component of high-speed rail. Ordinary subways do not have the luxury of benefiting from agency imperialism the way the Gateway project did; if they’re too expensive, they’re at risk of cancellation.

2. Averaged across cities and a number of years of construction, cities and countries with lower construction costs will build more public transit. We see this in the US vs. Sweden. Of course, there are periods of more construction, such as now, and periods of less, such as around 2000, but this affects both countries right now.

3. Variations from the average are often about other issues of competence – in Vancouver’s case, the failure of the faregates and the delayed Compass rollout. Political causes are less important: Vancouver’s business community opposed the transit referendum and organized against it, but it’s telling that it did so and succeeded, whereas business communities in cities with more popular transit authorities support additional construction.

In a post from 2011, Yonah Freemark argued that California HSR’s projected cost’s upper end was just 0.18% of the projected GDP of California over a 20-year construction period. The implication: the cost of high-speed rail (and public transit in general) is small relative to the ability of the economy to pay. This must be paired with the sobering observation that the benefits of public transit are similarly small, or at most of the same order of magnitude.

New York’s survived decades without Second Avenue Subway. It’s a good project to have, provided the costs are commensurate with the benefits, but without cost containment, phase 2 is probably too expensive, and phases 3 and 4 almost certainly. What’s more, the people funding such projects – the politicians, the voters, even the community organizations – consider them nice-to-haves. The US has no formal mechanism of estimating benefit-cost ratios, and a lot of local political dysfunction, and this can distort the funding, to the point that Gateway is being funded even though at this cost it shouldn’t. But, first, even a factor of 3 distortion is unusual, and second, on average, these distortions cancel out. Democrats and Republicans shouldn’t plan on controlling either Congress or the White House more than about half the time, in the long run, and transit activists shouldn’t plan on political dysfunction persistently working in their favor.

The only route forward is to improve the benefit-cost ratio. On the benefit side, this means aggressive upzoning around subway stations, probably the biggest lacuna in Los Angeles’s transit construction program. But in New York, and even in the next five transit cities in the US, this is not the main problem: population density on many corridors is sufficient by the standards of such European transit cities as Stockholm, Berlin, London, and Munich, none of which is extraordinarily dense like Paris.

No: the main problem in most big US cities is costs, and almost only costs. Operating costs, to some extent, but mainly capital construction costs. Congress and the affected states apparently have enough political will to build a 5-km tunnel for $20 billion going on $24 billion; if this system could be built for $15 billion, they’d jump at the opportunity to take credit. The US already has the will to spend reasonable amounts of money on public transit. The difference is that its $24 billion $25 billion of spending on subways buys 26 km 28.5 km of subway and 16 km of a mix of light rail and el, where it could be buying 120 km 125 km of subway. Work out where you’d build the extra 94 km 96.5 km and ask yourself if ignoring costs is such a good idea for transit activists.

New York’s Subway Frequency Guidelines are the Wrong Approach

In New York, the MTA has consistent guidelines for how frequently to run each subway route, based on crowding levels. The standards are based on crowding levels at the point of maximum crowding on each numbered or lettered route. Each line is designed to have the same maximum crowding, with different systemwide levels for peak and off-peak crowding. While this approach is fair, and on the surface reasonable, it is a poor fit for New York’s highly branched system, and in my view contributes to some of the common failings of the subway.

Today, the off-peak guidelines call for matching frequency to demand, so that at the most crowded, the average train on each route has 25% more passengers than seats. Before the 2010 service cuts, the guidelines had the average train occupied to exact seating capacity. At the peak, the peak crowding guidelines are denser: 110 passengers on cars on the numbered lines, 145 on shorter (60’/18 m) cars on the lettered lines, 175 on longer (75’/23 m) cars on the lettered lines. There’s a minimum frequency of a train every 10 minutes during the day, and a maximum frequency at the peak depending on track capacity. When the MTA says certain lines, such as the 4/5/6, are operating above capacity, what it means is that at maximum track capacity, trains are still more crowded than the guideline.

In reality, guideline loads are frequently exceeded. Before the 2010 service cuts, many off-peak trains still had standees, often many standees. Today, some off-peak trains are considerably fuller than 25% above seated capacity. In this post, I’d like to give an explanation, and tie this into a common hazard of riding the subway in New York: trains sitting in the tunnels, as the conductor plays the announcement, “we are delayed because of train traffic ahead of us.”

The key takeaway from the system is that frequency at each time of day is calculated separately for each numbered or lettered route. Even when routes spend extensive distance interlined, as the 2/3 and 4/5 do, their frequencies are calculated separately. As of December 2014, we have the following headways, in minutes:

Line AM peak Noon off-peak PM peak
1 3 6 4
2 6:30 7:30 6:45
3 6 8:30 6:45
4 4:30 7:30 4:24
5 5 8:30 5:45
6 2:30 4 3:18
7 2:30 5 2:30
A 4:45 10 4:45
B 8:45 10 9:15
C 9:15 10 10
D 6:15 10 6:45
E 4 7:30 4
F 4:45 7:30 5
G 6:30 10 10
J/Z 5 10 5
L 4:30 6 4
M 8:45 10 9:25
N 7:15 10 7:30
Q 7:15 10 7:45
R 7:30 10 7:30

Consider now the shared segments between the various lines. The 4 comes every 4.5 minutes in the morning peak, and the 5 every 5 minutes. There is no way to maintain even spacing on both lines with these headways: they share tracks for an extensive portion of their trip. Instead, the dispatchers move trains around to make sure that headways are as even as possible on both the shared trunk segments and the branches, but something has to give. In 45 minutes, there are ten 4s and nine 5s. Usually, on trunk lines with two branches, trains alternate, but here, it’s not possible to have a perfect alternation in which each 4 is followed by a 5 and each 5 is followed by a 4. There is bound to be a succession of two 4s: the second 4 is going to be less crowded than the guideline, and the following 5 is going to be more crowded.

It gets worse when we consider the extensive reverse-branching, especially on the lettered lines. For example, on its northbound journey, the Q initially does not share tracks with any line; then it shares tracks with the B, into Downtown Brooklyn; then it crosses into Manhattan sharing tracks with the N; then it again shares tracks with no other route, running express in Manhattan while the N runs local; then it shares tracks with the N and R into Queens; and then finally it shares tracks with the N in Queens. It is difficult to impossible to plan a schedule that ensures smooth operations like this, even off-peak, especially when the frequency is so variable.

Concretely, consider what happens when the Q enters Manhattan behind an N. Adequate separation between trains is usually 2 minutes – occasionally less, but the schedule is not robust to even slight changes then. To be able to go to Queens ahead of the N, the Q has to gain 4 minutes running express in Manhattan while the N runs local. Unfortunately, the Q’s express jaunt only skips 4 stations in Manhattan, and usually the off-peak stop penalty is only about 45 seconds, so the Q only gains 3 minutes on the N. Thus, the N has to be delayed at Herald Square for a minute, possibly delaying an R behind it, or the Q has to be delayed 3 minutes to stay behind the N.

In practice, it’s possible to schedule around this problem when schedules are robust. Off-peak, the N, Q, and R all come every 10 minutes, which makes it possible to schedule the northbound Q to always enter Manhattan ahead of the N rather than right behind it. Off-peak, the services they share tracks with – the B, D, and M – all come every 10 minutes as well. The extensive reverse branching still makes the schedule less robust than it can be, but it is at least possible to schedule non-conflicting moves. (That said, the M shares tracks with the much more frequent F.) At the peak, things are much harder: while the N, Q, and R have very similar headways, the D is considerably more frequent, and the B and M considerably less frequent.

I believe that this system is one of the factors contributing to uneven frequency in New York, with all of the problems it entails: crowding levels in excess of guidelines, trains held in the tunnel, unpredictable wait times at stations. Although the principle underlying the crowding guidelines is sound, and I would recommend it in cities without much subway branching, in New York it fails to maintain predictable crowding levels, and introduces unnecessary problems elsewhere.

Instead of planning schedules around consistent maximum crowding, the MTA should consider planning schedules around predictable alternation of services on shared trunk lines. This means that, as far as practical, all lettered lines except the J/Z and the L should have the same frequency, and in addition the 2/3/4/5 should also have the same frequency. The 7 and L, which do not share their track or route with anything else, would maintain the present system. The J/Z, which have limited track sharing with other lines (only the M), could do so as well. The 1 and 6 do not share tracks with other lines, but run local alongside the express 2/3 and 4/5. Potentially, they could run at exactly twice the frequency of the 2/3/4/5, with scheduled timed local/express transfers; however, while this may work for the 6, it would give the 1 too much service, as there is much more demand for express than local service on the line.

To deal with demand mismatches, for example between the E/F and the other lettered lines, there are several approaches, each with its own positives and negatives:

– When the mismatch in demand is not large, the frequencies could be made the same, without too much trouble. The N/Q/R could all run the same frequency. More controversially, so could the 2/3/4/5: there would be more peak crowding on the East Side than on the West Side, but, to be honest, at the peak the 4 and 5 are beyond capacity anyway, so they already are more crowded.

– Some services could run at exactly twice the frequency of other services. This leads to uneven headways on the trunks, but maintains even headways on branches. For example, the A’s peak frequency is very close to exactly twice that of the C, so as they share tracks through Lower Manhattan and Downtown Brooklyn, they could alternate A-C-A-empty slot.

– Services that share tracks extensively could have drastic changes in frequency to each route, preserving trunk frequency. This should be investigated for the E/F on Queens Boulevard: current off-peak frequency is 8 trains per hour each, so cutting the E to 6 and beefing the F to 12 is a possibility.

– Service patterns could be changed, starting from the assumption that every lettered service runs every 10 minutes off-peak and (say) 6-7 minutes at the peak. If some corridors are underserved with just two services with such frequency, then those corridors could be beefed with a third route: for example, the Queens Boulevard express tracks could be supplanted with a service that runs the F route in Jamaica but then enters Manhattan via 53rd Street, like the E, and then continues either via 8th Avenue like the E or 6th Avenue like the M. Already, some peak E trains originate at Jamaica-179th like the F, rather than the usual terminus of Jamaica Center, which is limited to a capacity of 12 trains per hour.

– The service patterns could be drastically redrawn to remove reverse branching. I worked this out with Threestationsquare in comments on this post, leading to a more elegant local/express pattern but eliminating or complicating several important transfers. In particular, the Broadway Line’s N/Q/R trains could be made independent of the Sixth Avenue trains in both Queens and Brooklyn, allowing their frequencies to be tailored to demand without holding trains in tunnels to make frequencies even.

For the lettered lines, I have some affinity for the fourth solution, which at least in principle is based on a service plan from start to finish, rather than on first drawing a map and then figuring out frequency. But it has two glaring drawbacks: it involves more branching than is practiced today, since busy lines would get three services rather than two, making the schedule less robust to delays; and it is so intertwined with crowding levels that every major service change is likely to lead to complete overhaul of the subway map, as entire routes are added and removed based on demand. The second drawback has a silver lining; the first one does not.

I emphasize that this is more a problem of reverse branching than of conventional branching. The peak crowding on all lines in New York, with the exception of the non-branched 7 and 1, occurs in the Manhattan core. Thus, if routes with different colors never shared tracks, it would not be hard to designate a frequency for each trunk route at each time of day, without leading to large mismatches between service and demand. In contrast, reverse branching imposes schedule dependencies between many routes, to the point that all lettered routes except the L have to have the same frequency, up to integer multiples, to avoid conflicts between trains.

The highly branched service pattern in New York leads to a situation in which there is no perfect solution to train scheduling. But the MTA’s current approach is the wrong one, certainly on the details but probably also in its core. It comes from a good place, but it does not work for the system New York has, and the planners should at least consider alternatives, and discuss them publicly. If the right way turns out to add or remove routes in a way that makes it easier to schedule trains, then this should involve extensive public discussion of proposed service maps and plans, with costs and benefits to each community openly acknowledged. It is not good transit to maintain the current scheduling system just because it’s how things have always worked.

When There’s Nothing Left To Burn, You Have To Set Money On Fire

Two recent news items have driven home the point that American construction costs are out of control. The first is the agreement between the federal government and the states of New York and New Jersey to fund the Gateway project, at a cost of $20 billion. The second is the release of more detailed environmental impact studies for high-speed rail on the Northeast Corridor; I previously expressed tepidly positive sentiment toward the NEC Future concept, but now there are concrete cost projections: the only full HSR option, Alternative 3, is projected to cost $290 billion. As Stephen Smith noted on Twitter, Alternative 3 is twice as expensive per km as the mostly underground Chuo Shinkansen maglev. As such, I am going to ignore other issues in this post, such as whether to serve Hartford on the mainline or not: they are real issues, but are secondary concerns to the outrageous cost figures.

Although both Gateway and NEC Future have extreme costs – too high for me to be able to support either project – the causes of those high costs are different. Gateway includes not just a new tunnel across the Hudson but also substantial unnecessary scope in Penn Station South; however, I suspect that even if the scope is pared down to the minimum required to provide four tracks from Newark to New York, the budget would still be very high. The bare Gateway tunnel (including Penn South) is to my understanding $14-16 billion; the maximum cost that can be justified by the extra ridership, unless additional operating improvements (which can be done today) are in place, is about $7 billion. As with Second Avenue Subway, there is a real problem of high unit costs. I emphasize that there is too much scope in Gateway, but the scope alone cannot explain why 5 km of tunnel cost many billions, when expensive non-US projects such as Crossrail top at a billion dollars per km and the geologically more complex Marmaray tunnel cost (in PPP terms) about $400 million per km.

The situation with NEC Future is different, in two ways. First, if Gateway cuts a zero from the budget, I will consider it a solid project, perhaps even an inexpensive one given the wide river crossing. (For reference, in 2003 the projected cost was $3 billion). In contrast, if NEC Future cuts a zero from its budget, I will still consider it too expensive – perhaps worth it because of the benefits of HSR, but certainly too high to be built without further inquiry. $29 billion for 720 km is justified for a line with a fair amount of tunneling and entirely greenfield construction, whereas the NEC has long segments that are already nearly ready for HSR and requires very little tunneling.

But second, and more importantly, NEC Future’s unit costs are not high. Read appendix B.06, which discusses cost: on PDF-p. 28 it breaks down cost by item, and other than the tunnels, which at $400-500 million per km are several times as expensive as intercity rail tunnels usually are, the infrastructure items’ per-km costs are reasonable. And the NEC doesn’t require much tunneling in the first place: Connecticut may be hilly, but HSR can climb 3.5% grades and ride on top of the hills, and only in Bridgeport is tunneling really necessary. Make it perhaps 5 km of required tunneling, all around Bridgeport. When I said $10 billion would build full-fat HSR on the NEC, I assumed $200-250 million per km for the Bridgeport tunnel. I also assumed $750 million for new tunnels in Baltimore, whose cost has since risen to $4 billion in part due to extra scope (4 tracks rather than 2). So 2 extra billions come from more expensive tunneling, and 278 extra billions come from bloated scope. Perhaps a subset of the 278 comes from high unit costs for systems and electrification, but these are not the main cost drivers, and are also quite easy to copy from peer developed countries. In the rest of this post, I will document some of the unnecessary scope. I emphasize that while Alternative 3 is the worst, the cost projection for Alternative 1, at $50 billion, is still several times the defensible cost of improvements.

Let us turn to chapter 4, the alternatives analysis, and start on PDF-p. 54. Right away, we see the following wasteful scope in Alternative 2:

  • Full four-tracking on the Providence Line, instead of strategic overtakes as detailed here.
  • A bypass of the Canton Viaduct, which at a radius of 1,746 meters imposes only a mild speed restriction on trains with E5 and Talgo tilt capability, 237 km/h.
  • An entirely new tunnel from Penn Station to Sunnyside, adding a third East River tunnel even though the LIRR is not at capacity now, let alone after East Side Access opens.
  • A tunnel under Philadelphia, so as to serve the city at Market East rather than 30th Street Station.
  • Two new HSR-dedicated tracks in New Jersey parallel to the NEC, rather than scheduling commuter trains on existing local tracks as detailed here.
  • Two new HSR-dedicated tracks alongside much of the New Haven Line, even in areas where the existing alignment is too too curvy.
  • Extensive tunneling between New Haven and Providence (see PDF-pp. 69-70 and 75), even in Alternative 1, even though HSR trains can climb the grades on the terrain without any tunnels outside the Providence built-up area if the tracks go west.

Alternative 2 also assumes service connecting New Haven, Hartford, and Providence, which I do not think is the optimal alignment (it’s slightly more expensive and slower), but is defensible, unlike the long proposed tunnels under Philadelphia, totaling around 30 km. The overall concept is also far more defensible than the tunnel-heavy implementation.

Alternative 3 adds the following unnecessary scope (see PDF-pp. 58 and 76-83):

  • Full six-tracking between New York and Philadelphia and between Baltimore and Washington.
  • Tunnel-heavy alignment options bypassing the New Haven Line, including inland options via Danbury or a tunnel across the Long Island Sound.
  • The new Baltimore tunnels are longer and include a new Baltimore CBD station, where the existing station is at the CBD’s periphery.
  • If I understand correctly, new platforms at New York Penn Station under the existing station.
  • Tunnels under the built-up area of Boston.

According to the cost breakdown, at-grade track costs $20 million per km, embankments cost $25 million per km, elevated track costs about $80 million per km, and tunnels cost $400 million per km. When I draw my preferred alignments, I assume the same cost elements, except tunnels are cheaper, at $200 million per km. (I also add 20% for overheads on top of these base costs, whereas these documents add contingency on top of that.) This should bias the NEC Future toward above-ground options.

Instead, look at the maps in appendix A. Alternative 3 is PDF-pp. 76-81. The options for getting out of the New York urban area include an almost entirely tunneled inland alignment, and a tunnel under the Long Island Sound; making small compromises on trip time by using the New Haven Line, and making up time elsewhere by using better rolling stock, is simply not an option to the planners.

Let’s go back to Gateway now. Although the cost premium there is not as outrageous as for NEC Future, it is a good case study in what the US will fund when it thinks the project is necessary and when there is sufficient lobbying. Paris has the political will to spend about $35 billion on Grand Paris Express, and London is spending $22 billion on Crossrail and is planning to spend much more on Crossrail 2. Between Second Avenue Subway, the 7 Extension, Fulton Street Transit Center, the PATH terminal, East Side Access, and now Gateway, New York is planning to have spent $43 billion on public transit by the middle of next decade. And now people are talking about Second Avenue Subway Phase 2. The political will to build both rapid transit and HSR in the US exists; the government spends tens of billions on it. But due to poor cost effectiveness, what the US gets for its money is almost nothing.

The $20 billion that the federal government and both states are willing to set on fire for Gateway prove that, were there a plan to build HSR so that trains would go between Boston and Washington in three and a half hours on a budget of $10-15 billion, it would be funded. This is not a marginal case, where the best plan still elicits groans from anti-tax conservatives: those conservatives ride trains between New York and Washington and want them to be faster. Instead, it is purely about excessive costs. Gateway’s $20 billion could build the tunnel and also full HSR on the NEC, and the $290 billion that NEC Future wants to burn on HSR could build nearly a complete national HSR network, serving most metro areas above 1 million people. It’s no longer a question of political will; it’s purely a question of cost control. 95% cost savings are possible here, and this is the only thing advocates for better intercity rail in the US should be focusing on.

LIRR Scheduling

The Long Island Railroad’s timetable is a mess. There is too little off-peak service, especially at the urban stations. At the peak, there is more service, but the service pattern is inscrutable. The Babylon Branch runs a skip-stop pattern in which trains make three stops, skip the next three, and then make the three after them. The pattern of which branch east of Jamaica is sent to which city terminal (Penn Station, Flatbush/Atlantic, or occasionally Hunterspoint) is inconsistent; passengers generally get timed cross-platform transfers at Jamaica, but the frequent interlacing of trains introduces a lot of dependency between different branches in the schedule, reducing reliability. Worst, the Main Line runs trains one-way, so for an hour in the peak, there is no off-peak service. As expected, reverse-peak ridership is minimal, even though there’s a fair number of jobs within a comfortable walk of Mineola. In this post, I am going to discuss how to improve the schedules.

The main tool I will use is a map of LIRR line speed zones. This was made by Patrick O’Hara, of the invaluable but now taken-offline blog The LIRR Today. I emphasize that Patrick does not endorse my plan to eliminate one-way service, on the grounds that it would unacceptably add to the travel time for conventional peak trips from Hicksville and points east to Penn Station. However, using the map and some data about rolling stock performance, I am going to show that LIRR schedules are so padded that improvements to reliability via simpler scheduling can reduce trip times significantly, more than making up for additional trip times to the elimination of most express runs.

First, let us compute technical trip times. In Boston, I compute these by looking at the acceleration rate of the FLIRT, but New York has passable rolling stock already, which means that modernization does not require full replacement of the fleet. This means we should use the specs of the M7: 13.9 kilowatts per ton (FLIRT: 21.7 maximum, 16.7 continuous), and an initial acceleration rate of 0.9 m/s^2 (FLIRT: 1.2). Assuming no air resistance, this means the theoretical acceleration penalty to 130 km/h, the speed over most of the electrified LIRR main lines, is 23 seconds. Judging by the difference between theoretical and actual FLIRT acceleration performance, the actual penalty is about 26 seconds. The deceleration penalty is 19 seconds, for a total of 45. Up to a speed of 100 km/h, the acceleration penalty is 17 seconds and the deceleration penalty is 13 seconds, for a total of 30.

Let us take dwell times to be 30 seconds. With reasonably wide doors at the quarter points and level boarding, it should not be difficult for the LIRR to hold to this standard. Actual dwells appear to be about 40-50 seconds, but are in the context of considerable schedule padding, as we will see. I am going to round speeds up from mph to km/h, so 80 mph will be rounded to 130 km/h, and 60 mph to 100 km/h; the numbers are close, and when I compute curve speeds, the total equivalent cant seems very low, such that large speed increases are possible. However, I am going to stick to the speed map, only changing to km/h for ease of calculation. Including dwell time, the stop penalty in 130 km/h territory is 75 seconds, and the stop penalty in 100 km/h territory is 60 seconds.

Of note, the actual stop penalties we see on LIRR schedules are larger, on the order of 100 seconds. Part of it is the padding again, but part of it is that LIRR trains do not accelerate as fast as they can; the LIRR derated its trains, limiting their acceleration to about 0.45 m/s^2 to reduce the electric current. This can and should be reversed. If it is not, the acceleration penalty is 40 seconds to 130 km/h and 31 seconds to 100 km/h, while the deceleration penalty, unaffected by the change to maximum acceleration, remains the same; overall, this slows trains by about 15 seconds per stop.

East of Jamaica, there are almost no slow zones on either the Main Line or the Babylon Branch. Hicksville’s 65 km/h zone slows trains that stop at Hicksville by about 30 seconds (even a few hundred meters from the station, trains could go faster if the line speed were higher). The curve between Bethpage and Farmingdale is worth 15 seconds. The slowdown in the interlocking at the junction with the Hempstead Line adds 5 seconds. The slowdowns in Jamaica add 35 seconds east of Jamaica, and 55 west of Jamaica, both for stopping trains. On the Babylon Branch, there are a few restrictions in the 80-110 km/h range, worth in total about 70 seconds; Babylon itself is in 100 km/h territory, adding another 10 seconds.

It is 63.6 km from Jamaica to Ronkonkoma. An express train from Jamaica to Ronkonkoma stopping only at Hicksville would do the trip in 33 minutes. A limited-stop train that stopped at Floral Park, Mineola, Hicksville, and then all stops to Ronkonkoma would do the trip in 44.5 minutes. A train that made every LIRR stop, even ones that Ronkonkoma trains never stop at today, would do it in 53 minutes. Under the current schedule, limited-stop trains, not stopping at Floral Park (with technical travel time of 43.5 minutes), do the trip in an hour, for a pad factor of 38%. After accounting for the fact that LIRR trains don’t accelerate this quickly because of the derating, we obtain a technical travel time of around 45.5 minutes, for a pad factor of 32%, still immense.

In Zurich, schedules are padded 7%. Rerating the trains to allow faster acceleration, and reducing the pad to 7%, would cut the trip time under the current off-peak stopping pattern from an hour to 47 minutes, which can be taken as either a material speed boost or as an opportunity to make more local stops. As I will argue later, trains should make more local stops – specifically, all from Floral Park east. This is five more stops than trains currently make; taking the 7% pad into account, we get 54 minutes, still a noticeable improvement over the current situation.

It is 17.4 km from Penn Station to Jamaica. Rather than detail the slow zones, I will just give the technical travel time, for a full-acceleration M7 making no intermediate stops: 13 minutes, or 14 with a 7% pad; 1 of those 13 minutes comes from the Penn Station throat and its 25 km/h speed limit, which is one of the reasons I have emphasized the need for simpler interlockings in station reconstruction. The schedule has 19 minutes, which is a 45% pad relative to full-acceleration travel time, and around 40% relative to the derated travel time. This is even worse, which I believe comes from a combination of congestion in the Penn Station area and the timed transfer at Jamaica; these mean that delays on one branch propagate to the others, requiring more slack in the schedule to maintain reliability. However, I will note that Zurich’s 7% pad is in the context of an environment with even more branches sharing a trunk line, and a plethora of timed transfers and overtakes.

It is 44.4 km from Jamaica to Babylon. An all-stop train – counting Saint Albans but not Atlantic Branch-only Rosedale and Valley Stream – would do the trip in 41 minutes. As I’ve argued years ago, the Babylon Branch’s stations all have relatively equal ridership, unlike the Main Line, where a few stations dominate, and therefore, we shouldn’t plan around express trains. The current schedule‘s travel time on all-stop off-peak trains is 53 minutes, a pad of 29% relative to full-acceleration performance and 19% relative to the derated performance. I believe the reason there is much less padding here than on the Ronkonkoma Branch is that the service pattern is simpler: off-peak, all trains make all stops, whereas the Main Line mixes skip-stop and express trains between the Ronkonkoma and Port Jefferson Branches. If all trains make the same stops and there are no overtakes, it’s easier to recover from delays, so there is less need for padding. (A similar principle is that you need less padding on double-track lines than on single-track lines.)

As mentioned before, at Swiss 7% padding, making all Main Line trains all-local from Floral Park east allows 54-minute service from Ronkonkoma to Jamaica. It also allows 69-minute service from Ronkonkoma to Penn Station, with a minute-long dwell at Jamaica. This is two minutes less than the fastest daily train on the current schedule, a nonstop that runs once a day and arrives at Penn Station at 7:30 am, before the greatest rush. Even at the Babylon Branch’s 19% padding, we get 60-minute service from Ronkonkoma to Jamaica and 76-minute service to Penn Station, which compares with 75 minutes for two peak trains with a few intermediate stops, and 82 minutes for off-peak trains with the above-mentioned pattern.

As for the Babylon Branch, going down to 7% padding and rerating the trains at higher speed means all-stop trains, including the three current local stops between Jamaica and Penn Station, would do the trip in 62 minutes. This is competitive with most peak trains: one train stopping only at Jamaica does the trip in 53 minutes, arriving at 7:02 am, but the other morning express trains, with pads varying based on how close to the peak of peak it is, do the trip in 62-65 minutes.

I claim that the solution to the problems of the Main Line is to indeed abolish all express runs. At the peak, there is no excuse for them: current traffic between the Ronkonkoma, Port Jefferson, and Oyster Bay Branches is about 23 trains per hour at the peak, and this means that either all peak-direction trains run local, or trains run one way, with local trains on one track and express trains on the other. The LIRR chooses to sacrifice reverse-peak service, because frankly providing a coherent network is not a priority; the priority is connecting peak-hour suburban travelers to Manhattan, and saving them a few minutes at any cost. This is despite the fact that peak travelers are the most expensive to serve – the peak is what drives capital investment, to say nothing of the crew utilization problems. But in this case, the peak-focused service may be self-defeating, as the above computation of pad ratios shows.

In the morning peak, west of Hicksville, the service pattern should thus be the same for every Ronkonkoma or Port Jefferson Branch train: all stops to Floral Park (where passengers could transfer to the Hempstead Branch), then express to Jamaica and then Penn Station. All trains should be as identical as possible, which means cutting the diesels to shuttles and, in the medium term, electrifying the Port Jefferson Branch to the end, since there is high ridership the entire way, whereas the Oyster Bay Branch and the Main Line beyond Ronkonkoma have low ridership. The dispatching should emphasize headway management rather than the schedule. Since all trains are functionally identical from Hicksville west, it does not matter to passengers if their favorite train left early – the next one will show up in at most 3 minutes. For the same reason, the transfer at Jamaica should not be timed at the peak.

The highest rapid transit capacity in the world is on subway lines that use headway management rather than fixed schedules, including the Moscow Metro and many modern driverless lines, where the limit is 39 tph. I do not expect 39 tph on the LIRR, but there is no demand for that on the Main Line right now; the point is to maintain 24 tph without excessive schedule padding. Off-peak, trains should keep a schedule because the frequency is lower, but the lower frequency is precisely what makes delays not propagate so fast; similarly, off-peak, the Jamaica transfer should be timed. The greatest problem is in the afternoon off-peak, but there, the bulk of boardings are at Penn Station, where delays are less likely since it’s the start of the line.

This pattern also suggests which capital investments the LIRR needs to make: it needs to construct interlockings such that there are no conflicts between Main Line trains and other trains. This means two things. First, grade-separating Queens Interlocking, between the Main Line and the Hempstead Branch, which currently has an at-grade conflict between opposing trains (eastbound Hempstead Branch, westbound Main Line). And second, reconstructing Jamaica’s access tracks from the east in a way that allows the Main Line from the east to continue on the Main Line’s express tracks to the west without interference from other lines. Right now, there’s an at-grade conflict with the Babylon Branch, but only in the same direction, which is less problematic.

This means kicking other branches off the express tracks from Jamaica to Penn Station, the most desirable track pair heading west of Jamaica. This is fine. Passengers on branches that connect to Flatbush, or to the local tracks to Penn Station, could still transfer cross-platform at Jamaica, even if at the peak the connecting train does not wait for them. Besides, as noted above, 7%-padded local trains from Babylon to Penn Station would have the same trip time as all but the single fastest express Babylon Branch train today.

Jamaica’s current track layout is 8 platform tracks, numbered 1-8, north to south. There are platforms between tracks 1-2, 2-3, 4-5, 6-7, and 7-8. This platform configuration allows three-way timed transfers: when a train platforms on track 2, passengers can walk from track 1 to track 3 via the train. Right now, to the west, the Atlantic Branch connects to tracks 3-6, and the four tracks of the Main Line each connects to two Jamaica tracks. But track connections exist to persistently connect tracks 2 and 7 to the express Main Line tracks, making 1 and 8 the local tracks and 3 and 6 the tracks to Flatbush. To the east, the Far Rockaway and Long Beach Branches connect to the Atlantic Branch without conflicting with other trains. Local Main Line tracks connect to tracks 1 and 8 without conflict. The only conflict involves the Babylon Branch, which runs in the middle between the eastbound and westbound Main Line tracks before diverging, and points at tracks 2 and 7. The current service pattern is that most Babylon Branch trains run express from Jamaica to Penn Station, making this track layout desirable. However, if they are switched to the local, single-track flyovers to connect them to tracks 1 and 8 are required, or alternatively a connection to tracks 3 and 6, which can be done without flyovers. In either case, three-way timed transfers would be retained, except at the peak.

Under my through-running proposal, the Atlantic Branch would continue to Lower Manhattan, so its demand would be much greater than today, encouraging a layout in which the Babylon Branch connected to tracks 3 and 6 and went to Brooklyn and Lower Manhattan. The Main Line trains would express to East Side Access and Grand Central, with an additional stop at Sunnyside Junction. The Hempstead Branch, connected to Penn Station and the Empire Connection, would have service increased, with mode-neutral fares encouraging more travel from within New York and Hempstead. I would also propose a new branch of the Hempstead Branch, using the inner Central Branch, going to the East Garden City job cluster. The Oyster Bay Branch would be electrified and its junction with the Main Line grade-separated.

However, I emphasize that none of my proposed schedule changes requires the intensive capital investment associated with connecting Flatbush with Lower Manhattan. Even East Side Access is not required. Queens Interlocking would be grade-separated, and the Oyster Bay Branch would be reduced to a shuttle with an additional track at Mineola (unless electrifying the entire line and grade-separating the junction is cheaper in the short run, which I doubt). Initially, I am not sure the at-grade conflict with the Babylon Branch on the approach to Jamaica would be deadly. The subway has a same-direction at-grade conflict at Rogers Avenue Junction, between the 2, 3, and 5 trains, whose combined peak frequency is higher than that of the Main Line and Babylon Branch’s. Rogers Avenue Junction is a key bottleneck on the numbered lines in New York, which is why the LIRR should not replicate it in the long run, but in the short run, it is fine.

To conclude, here are proposed westbound timetables for Ronkonkoma, Babylon, and Hempstead trains. These assume no new stations and only the minimally required physical infrastructure (that is, grade-separating Queens Interlocking).

Main Line:

Ronkonkoma 7:00
Central Islip 7:05
Brentwood 7:09
Deer Park 7:12
Wyandanch 7:16
Pinelawn 7:19
Farmingdale 7:23
Bethpage 7:27
Hicksville 7:31
Westbury 7:35
Carle Place 7:37
Mineola 7:40
Merillon Avenue 7:42
New Hyde Park 7:44
Floral Park 7:47
Jamaica 7:53
New York Penn 8:08

This is a total travel time of 68 minutes, and not 69 as advertised above. This is because of rounding artifacts.

Hempstead Branch:

Hempstead 7:31
Country Life Press 7:33
Garden City 7:36
Nassau Boulevard 7:38
Stewart Manor 7:40
Floral Park 7:43
Bellerose 7:34
Queens Village 7:46
Hollis 7:49
Jamaica 7:53
Kew Gardens 7:57
Forest Hills 7:59
Woodside 8:04
New York Penn 8:12

The 4-minute difference between local and express travel time between Jamaica and Penn Station comes from the fact that the intermediate stations are for the most part in slower zones than 130 – only at Forest Hills is there enough of a distance to get up to 130, and only west of the station, not east. Erratum: although it is true the stations are in slow zones, I wrote this paragraph thinking there are four intermediate stations, where of course there are only three; 4/3 = 80 seconds per stop, which comes from rounding artifacts.

The Hempstead Branch has a 1.5-km single-track segment starting west of Hempstead and ending east of Garden City. It is quite slow; the 25 km/h curve just north (west) of Country Life Press has geometry good enough for 50 km/h without any superelevation (cant deficiency would be 150 mm), and with 150 mm superelevation would be good for 70. Replacing that entire 25-50 km/h segment with 70 km/h saves about a minute of travel time.

Babylon Branch:

Babylon 7:04
Lindenhurst 7:08
Copiague 7:10
Amityville 7:12
Massapequa Park 7:15
Massapequa 7:17
Seaford 7:19
Wantagh 7:21
Bellmore 7:24
Merrick 7:26
Freeport 7:29
Baldwin 7:31
Rockville Centre 7:34
Lynbrook 7:37
St. Albans 7:43
Jamaica 7:48
Kew Gardens 7:52
Forest Hills 7:54
Woodside 7:59
New York Penn 8:07

I arbitrarily chose the Ronkonkoma departure time to be 7:00, and then chose the Hempstead Branch schedule to allow a timed transfer at Jamaica. The five-minute offset for the Babylon Branch should be suggestive of the proposed frequency: off-peak, every ten minutes on the Babylon Branch (possibly every twenty but also every twenty on the West Hempstead Branch), every ten minutes on the Hempstead Branch (possibly every twenty but also every twenty on the Central Branch to East Garden City), and every ten minutes on the Main Line, with each of the Ronkonkoma and Port Jefferson Branches getting a train every twenty minutes. The Atlantic Branch trains should run every twenty minutes per branch, with a three-way timed transfer with the Main Line and Hempstead Branch. Off-peak, the Babylon Branch doesn’t transfer to anything else, so there is no need to worry about its at-grade conflict at Jamaica.

What’s Going on with Hudson Tunnel Cost Overruns?

Twenty-five billion dollars. The New York region’s political heavyweights – Andrew Cuomo, Chris Christie, Chuck Schumer, Cory Booker, Bill de Blasio – all want new Hudson tunnels, without any state funding for them; Schumer is proposing federal funding and a new interstate agency, parallel to the existing Port Authority, and a total budget of $25 billion. This is the highest figure I have seen so far; Amtrak still says $16 billion and Cuomo says $14 billion, and it’s likely the Gateway tunnels are indeed about $16 billion, while the remainder is for associated projects, such as fully four-tracking the line from Newark to the tunnel portal, a distance of about 11 kilometers. It is not my intention to criticize the cost; I’ve done that before.

Instead, I would like to point out that each time Gateway is the news, there usually seems to be a fresh cost escalation. Is it a $10 billion project? A $14 billion project? A $16 billion project? Or a $25 billion project? And what is included exactly? Amtrak does not make it clear what the various items are and how much they cost; I have not seen a single cost estimate that attempts to establish a baseline for new Hudson tunnels without the Penn Station South component, which would provide a moderate short-term boost to capacity but is not necessary for the project. The articles I’ve seen do not explain the origin of the $25 billion figure, either; it may include the tunnel and full four-tracking of Newark-New York, or it may include additional scope, for example Amtrak’s planned vertical circulation for a future (unnecessary) deep cavern for high-speed rail (see picture here).

The main issue here, the way I see it, is the interaction between public trust and political self-aggrandizement. It is common in all aspects of Israeli governance for new ministers to announce sweeping changes and reorganizations, just to remind the country that they exist and are doing something; this generally makes it harder to implement gradual reforms, and makes it completely impossible to do anything by consensus. Implementing a plan that was developed by consensus over many years makes one a bureaucrat; leaders change everything. In the US, this is the case not everywhere in government, but at least within public transportation infrastructure.

As we see in the case of Schumer’s call for a new interstate authority, the changes a heavyweight politician makes in order to appear as a leader have nothing to do with real problems that the project may have. Solving those problems requires detailed knowledge of the project at hand, which is the domain of bureaucrats and technocrats, and not of heavyweight politicians. Even a heavyweight who understands that there is a problem may not know or care about how to fix it: for example, Christie used the expression “tunnel to Macy’s basement,” invoking the deep cavern, to explain why ARC was wasteful, but chose to cancel the project rather than to remove the cavern and restore a track connection from the tunnel to Penn Station, which was in the official ARC Alt P plan until it was cut to limit the cost overruns. Managing a project is hard, and is, again, the domain of technocrats. The heavyweight will grandstand instead, regardless of whether it means canceling the project, or proposing an entirely new layer of government to build it.

As for trust, let us look at the benefits of new Hudson tunnels. The traditional, and least objectionable, is added capacity: the existing tunnels are currently at capacity during rush hour, and there’s much more demand for rail travel from New Jersey to Manhattan than they can accommodate. We can measure this benefit in terms of the combination of increased ridership from more service from more suburban areas, reduced crowding, and possibly slightly higher speeds. As a crude estimate of this benefit, current New Jersey Transit ridership at Penn Station is 87,000 per weekday in each direction. Doubling capacity means roughly doubling ridership, which would come from a combination of induced demand and diversion of traffic from cars, Port Authority buses, and commuter rail-PATH connections. This means the new tunnel can expect about 175,000 new commuter rail trips per weekday. At $10,000 per weekday trip, which is about average for very large non-US cities’ subway extensions, this justifies $1.75 billion. At $20,000, about the same as the projection for Grand Paris Express, Crossrail, and Second Avenue Subway Phase 1, all of which are justified on grounds of ridership and capacity on parallel lines, this is $3.5 billion. At $40,000, about the same as old projections for Second Avenue Subway Phase 2, which I used to analyze de Blasio’s Utica subway proposal, this is $7 billion. A $25 billion budget corresponds to a cost per rider well into the range of airport connectors.

Now, I’d like to think that informed citizens can look at these costs and benefits. At least, the fact that public transit projects only cost as much per rider as Gateway if they’re airport connectors (thus, of especial interest to the elites) or if something very wrong happened with the ridership projections, suggests that there is, normally, a ceiling to what the political system will fund. Even at $14-16 billion, the two states involved and the federal government groaned at funding Gateway, speaking to the fact that it’s not, in fact, worth this much money. In contrast, a bigger project, with bigger benefits, would be funded enthusiastically if it cost this much – for example, California already has almost this much money for high-speed rail, counting Prop 1A funds that are yet inaccessible due to the requirement of a 50/50 match from other sources.

Against this background, we see scare stories that Gateway must be built for reasons other than capacity and ridership. The old tunnels are falling apart, and Amtrak would like to shut them down one track at the time for long-term repairs. The more mundane reality is that the tunnels have higher maintenance costs than Amtrak would like since each track can only be shut down for short periods, on weekends and at night. This is buried in technical documents that don’t give the full picture, and don’t give differential costs for continuing the present regime of weekend single-tracking versus the recommended long-term closures. The given cost for Sandy-related North River Tunnel repairs is $350 million, assuming long-term closures, and it’s unlikely the present regime is billions of dollars more expensive.

I am reminded of the Tappan Zee Bridge replacement: the existing bridge has high maintenance costs due to its age and poor state, but the net present value of the maintenance cost is $2.5 billion and that of the excess maintenance cost is less, both figures well below the replacement cost. The bridge itself is structurally sound, but in popular media it is portrayed as structurally deficient. This relates to the problem of heavyweight politicians, for the Tappan Zee Bridge replacement is Cuomo’s pet project.

More fundamentally, who can trust any claim Amtrak makes about the structural soundness of tunnels? It says a lot that, when I asked on Twitter why transportation authorities do not immediately shut down unsafe pieces of infrastructure, various commenters answered “politics,” and on one (I believe James Sinclair) suggested that Amtrak order an emergency closure of one of the Hudson tunnel tracks just to drive home the point that new tunnels are necessary. I would like to stress that this is not Amtrak or a heavyweight proposing that, but the mere fact that commenters can seriously talk about it is telling. Most of the writers and commenters on the US transit blogosphere are very progressive and hate the Republicans; I have not seen a single comment recommending that the Democrats steal elections, fudge official statistics to make the party look more successful, or arrest Republican politicians on trumped-up charges, because in the US (and other first-world democracies), this is simply not done, and everyone except conspiracy theorists recognizes it. But politicizing the process of deciding which infrastructure projects are necessary for safety purposes and which are simply service expansions is normal enough that people can propose it half-seriously.

This brings me back to the issue of what I want the politicians to do, and what I expect them to do. What I want them to do is to be honest about costs and benefits, mediate between opposing interests (including different agencies that fight turf battles), and make decisions based on the best available information. This would necessarily limit costs, since, from the point of view of a member of Congress, if they get $25 billion for a piece of infrastructure then they cannot get $25 billion for another priority of theirs. They don’t do that, not in the US, and I’ve learned not to expect any better, as have the voters. Instead of working to make $25 billion go a longer way (to put things in perspective, I expect my regional rail tunnel proposal to cost $15-20 billion, at Crossrail 2 costs), Schumer is working to make $25 billion to sound like it’s going to a bigger deal than the new Hudson tunnels actually are.

None of this is a secret. American voters have learned to expect some kind of machine-greasing and politicking, to the point of losing the ability to trust either the politicians or the agencies, even in those cases when they are right. The result is that it’s possible to stretch the truth about how necessary a piece of infrastructure is, since people would believe or disbelieve it based on prior political beliefs anyway, and there is no expectation that the politicians or public authorities making those claims will have to justify them to the public in any detail. Lying to the public becomes trivially easy in this circumstance, and thus, costs can rise indefinitely, since everyone involved can pretend the benefits will rise to match them.