Category: New York

LIRR Scheduling

The Long Island Railroad’s timetable is a mess. There is too little off-peak service, especially at the urban stations. At the peak, there is more service, but the service pattern is inscrutable. The Babylon Branch runs a skip-stop pattern in which trains make three stops, skip the next three, and then make the three after them. The pattern of which branch east of Jamaica is sent to which city terminal (Penn Station, Flatbush/Atlantic, or occasionally Hunterspoint) is inconsistent; passengers generally get timed cross-platform transfers at Jamaica, but the frequent interlacing of trains introduces a lot of dependency between different branches in the schedule, reducing reliability. Worst, the Main Line runs trains one-way, so for an hour in the peak, there is no off-peak service. As expected, reverse-peak ridership is minimal, even though there’s a fair number of jobs within a comfortable walk of Mineola. In this post, I am going to discuss how to improve the schedules.

The main tool I will use is a map of LIRR line speed zones. This was made by Patrick O’Hara, of the invaluable but now taken-offline blog The LIRR Today. I emphasize that Patrick does not endorse my plan to eliminate one-way service, on the grounds that it would unacceptably add to the travel time for conventional peak trips from Hicksville and points east to Penn Station. However, using the map and some data about rolling stock performance, I am going to show that LIRR schedules are so padded that improvements to reliability via simpler scheduling can reduce trip times significantly, more than making up for additional trip times to the elimination of most express runs.

First, let us compute technical trip times. In Boston, I compute these by looking at the acceleration rate of the FLIRT, but New York has passable rolling stock already, which means that modernization does not require full replacement of the fleet. This means we should use the specs of the M7: 13.9 kilowatts per ton (FLIRT: 21.7 maximum, 16.7 continuous), and an initial acceleration rate of 0.9 m/s^2 (FLIRT: 1.2). Assuming no air resistance, this means the theoretical acceleration penalty to 130 km/h, the speed over most of the electrified LIRR main lines, is 23 seconds. Judging by the difference between theoretical and actual FLIRT acceleration performance, the actual penalty is about 26 seconds. The deceleration penalty is 19 seconds, for a total of 45. Up to a speed of 100 km/h, the acceleration penalty is 17 seconds and the deceleration penalty is 13 seconds, for a total of 30.

Let us take dwell times to be 30 seconds. With reasonably wide doors at the quarter points and level boarding, it should not be difficult for the LIRR to hold to this standard. Actual dwells appear to be about 40-50 seconds, but are in the context of considerable schedule padding, as we will see. I am going to round speeds up from mph to km/h, so 80 mph will be rounded to 130 km/h, and 60 mph to 100 km/h; the numbers are close, and when I compute curve speeds, the total equivalent cant seems very low, such that large speed increases are possible. However, I am going to stick to the speed map, only changing to km/h for ease of calculation. Including dwell time, the stop penalty in 130 km/h territory is 75 seconds, and the stop penalty in 100 km/h territory is 60 seconds.

Of note, the actual stop penalties we see on LIRR schedules are larger, on the order of 100 seconds. Part of it is the padding again, but part of it is that LIRR trains do not accelerate as fast as they can; the LIRR derated its trains, limiting their acceleration to about 0.45 m/s^2 to reduce the electric current. This can and should be reversed. If it is not, the acceleration penalty is 40 seconds to 130 km/h and 31 seconds to 100 km/h, while the deceleration penalty, unaffected by the change to maximum acceleration, remains the same; overall, this slows trains by about 15 seconds per stop.

East of Jamaica, there are almost no slow zones on either the Main Line or the Babylon Branch. Hicksville’s 65 km/h zone slows trains that stop at Hicksville by about 30 seconds (even a few hundred meters from the station, trains could go faster if the line speed were higher). The curve between Bethpage and Farmingdale is worth 15 seconds. The slowdown in the interlocking at the junction with the Hempstead Line adds 5 seconds. The slowdowns in Jamaica add 35 seconds east of Jamaica, and 55 west of Jamaica, both for stopping trains. On the Babylon Branch, there are a few restrictions in the 80-110 km/h range, worth in total about 70 seconds; Babylon itself is in 100 km/h territory, adding another 10 seconds.

It is 63.6 km from Jamaica to Ronkonkoma. An express train from Jamaica to Ronkonkoma stopping only at Hicksville would do the trip in 33 minutes. A limited-stop train that stopped at Floral Park, Mineola, Hicksville, and then all stops to Ronkonkoma would do the trip in 44.5 minutes. A train that made every LIRR stop, even ones that Ronkonkoma trains never stop at today, would do it in 53 minutes. Under the current schedule, limited-stop trains, not stopping at Floral Park (with technical travel time of 43.5 minutes), do the trip in an hour, for a pad factor of 38%. After accounting for the fact that LIRR trains don’t accelerate this quickly because of the derating, we obtain a technical travel time of around 45.5 minutes, for a pad factor of 32%, still immense.

In Zurich, schedules are padded 7%. Rerating the trains to allow faster acceleration, and reducing the pad to 7%, would cut the trip time under the current off-peak stopping pattern from an hour to 47 minutes, which can be taken as either a material speed boost or as an opportunity to make more local stops. As I will argue later, trains should make more local stops – specifically, all from Floral Park east. This is five more stops than trains currently make; taking the 7% pad into account, we get 54 minutes, still a noticeable improvement over the current situation.

It is 17.4 km from Penn Station to Jamaica. Rather than detail the slow zones, I will just give the technical travel time, for a full-acceleration M7 making no intermediate stops: 13 minutes, or 14 with a 7% pad; 1 of those 13 minutes comes from the Penn Station throat and its 25 km/h speed limit, which is one of the reasons I have emphasized the need for simpler interlockings in station reconstruction. The schedule has 19 minutes, which is a 45% pad relative to full-acceleration travel time, and around 40% relative to the derated travel time. This is even worse, which I believe comes from a combination of congestion in the Penn Station area and the timed transfer at Jamaica; these mean that delays on one branch propagate to the others, requiring more slack in the schedule to maintain reliability. However, I will note that Zurich’s 7% pad is in the context of an environment with even more branches sharing a trunk line, and a plethora of timed transfers and overtakes.

It is 44.4 km from Jamaica to Babylon. An all-stop train – counting Saint Albans but not Atlantic Branch-only Rosedale and Valley Stream – would do the trip in 41 minutes. As I’ve argued years ago, the Babylon Branch’s stations all have relatively equal ridership, unlike the Main Line, where a few stations dominate, and therefore, we shouldn’t plan around express trains. The current schedule‘s travel time on all-stop off-peak trains is 53 minutes, a pad of 29% relative to full-acceleration performance and 19% relative to the derated performance. I believe the reason there is much less padding here than on the Ronkonkoma Branch is that the service pattern is simpler: off-peak, all trains make all stops, whereas the Main Line mixes skip-stop and express trains between the Ronkonkoma and Port Jefferson Branches. If all trains make the same stops and there are no overtakes, it’s easier to recover from delays, so there is less need for padding. (A similar principle is that you need less padding on double-track lines than on single-track lines.)

As mentioned before, at Swiss 7% padding, making all Main Line trains all-local from Floral Park east allows 54-minute service from Ronkonkoma to Jamaica. It also allows 69-minute service from Ronkonkoma to Penn Station, with a minute-long dwell at Jamaica. This is two minutes less than the fastest daily train on the current schedule, a nonstop that runs once a day and arrives at Penn Station at 7:30 am, before the greatest rush. Even at the Babylon Branch’s 19% padding, we get 60-minute service from Ronkonkoma to Jamaica and 76-minute service to Penn Station, which compares with 75 minutes for two peak trains with a few intermediate stops, and 82 minutes for off-peak trains with the above-mentioned pattern.

As for the Babylon Branch, going down to 7% padding and rerating the trains at higher speed means all-stop trains, including the three current local stops between Jamaica and Penn Station, would do the trip in 62 minutes. This is competitive with most peak trains: one train stopping only at Jamaica does the trip in 53 minutes, arriving at 7:02 am, but the other morning express trains, with pads varying based on how close to the peak of peak it is, do the trip in 62-65 minutes.

I claim that the solution to the problems of the Main Line is to indeed abolish all express runs. At the peak, there is no excuse for them: current traffic between the Ronkonkoma, Port Jefferson, and Oyster Bay Branches is about 23 trains per hour at the peak, and this means that either all peak-direction trains run local, or trains run one way, with local trains on one track and express trains on the other. The LIRR chooses to sacrifice reverse-peak service, because frankly providing a coherent network is not a priority; the priority is connecting peak-hour suburban travelers to Manhattan, and saving them a few minutes at any cost. This is despite the fact that peak travelers are the most expensive to serve – the peak is what drives capital investment, to say nothing of the crew utilization problems. But in this case, the peak-focused service may be self-defeating, as the above computation of pad ratios shows.

In the morning peak, west of Hicksville, the service pattern should thus be the same for every Ronkonkoma or Port Jefferson Branch train: all stops to Floral Park (where passengers could transfer to the Hempstead Branch), then express to Jamaica and then Penn Station. All trains should be as identical as possible, which means cutting the diesels to shuttles and, in the medium term, electrifying the Port Jefferson Branch to the end, since there is high ridership the entire way, whereas the Oyster Bay Branch and the Main Line beyond Ronkonkoma have low ridership. The dispatching should emphasize headway management rather than the schedule. Since all trains are functionally identical from Hicksville west, it does not matter to passengers if their favorite train left early – the next one will show up in at most 3 minutes. For the same reason, the transfer at Jamaica should not be timed at the peak.

The highest rapid transit capacity in the world is on subway lines that use headway management rather than fixed schedules, including the Moscow Metro and many modern driverless lines, where the limit is 39 tph. I do not expect 39 tph on the LIRR, but there is no demand for that on the Main Line right now; the point is to maintain 24 tph without excessive schedule padding. Off-peak, trains should keep a schedule because the frequency is lower, but the lower frequency is precisely what makes delays not propagate so fast; similarly, off-peak, the Jamaica transfer should be timed. The greatest problem is in the afternoon off-peak, but there, the bulk of boardings are at Penn Station, where delays are less likely since it’s the start of the line.

This pattern also suggests which capital investments the LIRR needs to make: it needs to construct interlockings such that there are no conflicts between Main Line trains and other trains. This means two things. First, grade-separating Queens Interlocking, between the Main Line and the Hempstead Branch, which currently has an at-grade conflict between opposing trains (eastbound Hempstead Branch, westbound Main Line). And second, reconstructing Jamaica’s access tracks from the east in a way that allows the Main Line from the east to continue on the Main Line’s express tracks to the west without interference from other lines. Right now, there’s an at-grade conflict with the Babylon Branch, but only in the same direction, which is less problematic.

This means kicking other branches off the express tracks from Jamaica to Penn Station, the most desirable track pair heading west of Jamaica. This is fine. Passengers on branches that connect to Flatbush, or to the local tracks to Penn Station, could still transfer cross-platform at Jamaica, even if at the peak the connecting train does not wait for them. Besides, as noted above, 7%-padded local trains from Babylon to Penn Station would have the same trip time as all but the single fastest express Babylon Branch train today.

Jamaica’s current track layout is 8 platform tracks, numbered 1-8, north to south. There are platforms between tracks 1-2, 2-3, 4-5, 6-7, and 7-8. This platform configuration allows three-way timed transfers: when a train platforms on track 2, passengers can walk from track 1 to track 3 via the train. Right now, to the west, the Atlantic Branch connects to tracks 3-6, and the four tracks of the Main Line each connects to two Jamaica tracks. But track connections exist to persistently connect tracks 2 and 7 to the express Main Line tracks, making 1 and 8 the local tracks and 3 and 6 the tracks to Flatbush. To the east, the Far Rockaway and Long Beach Branches connect to the Atlantic Branch without conflicting with other trains. Local Main Line tracks connect to tracks 1 and 8 without conflict. The only conflict involves the Babylon Branch, which runs in the middle between the eastbound and westbound Main Line tracks before diverging, and points at tracks 2 and 7. The current service pattern is that most Babylon Branch trains run express from Jamaica to Penn Station, making this track layout desirable. However, if they are switched to the local, single-track flyovers to connect them to tracks 1 and 8 are required, or alternatively a connection to tracks 3 and 6, which can be done without flyovers. In either case, three-way timed transfers would be retained, except at the peak.

Under my through-running proposal, the Atlantic Branch would continue to Lower Manhattan, so its demand would be much greater than today, encouraging a layout in which the Babylon Branch connected to tracks 3 and 6 and went to Brooklyn and Lower Manhattan. The Main Line trains would express to East Side Access and Grand Central, with an additional stop at Sunnyside Junction. The Hempstead Branch, connected to Penn Station and the Empire Connection, would have service increased, with mode-neutral fares encouraging more travel from within New York and Hempstead. I would also propose a new branch of the Hempstead Branch, using the inner Central Branch, going to the East Garden City job cluster. The Oyster Bay Branch would be electrified and its junction with the Main Line grade-separated.

However, I emphasize that none of my proposed schedule changes requires the intensive capital investment associated with connecting Flatbush with Lower Manhattan. Even East Side Access is not required. Queens Interlocking would be grade-separated, and the Oyster Bay Branch would be reduced to a shuttle with an additional track at Mineola (unless electrifying the entire line and grade-separating the junction is cheaper in the short run, which I doubt). Initially, I am not sure the at-grade conflict with the Babylon Branch on the approach to Jamaica would be deadly. The subway has a same-direction at-grade conflict at Rogers Avenue Junction, between the 2, 3, and 5 trains, whose combined peak frequency is higher than that of the Main Line and Babylon Branch’s. Rogers Avenue Junction is a key bottleneck on the numbered lines in New York, which is why the LIRR should not replicate it in the long run, but in the short run, it is fine.

To conclude, here are proposed westbound timetables for Ronkonkoma, Babylon, and Hempstead trains. These assume no new stations and only the minimally required physical infrastructure (that is, grade-separating Queens Interlocking).

Main Line:

Ronkonkoma 7:00
Central Islip 7:05
Brentwood 7:09
Deer Park 7:12
Wyandanch 7:16
Pinelawn 7:19
Farmingdale 7:23
Bethpage 7:27
Hicksville 7:31
Westbury 7:35
Carle Place 7:37
Mineola 7:40
Merillon Avenue 7:42
New Hyde Park 7:44
Floral Park 7:47
Jamaica 7:53
New York Penn 8:08

This is a total travel time of 68 minutes, and not 69 as advertised above. This is because of rounding artifacts.

Hempstead Branch:

Hempstead 7:31
Country Life Press 7:33
Garden City 7:36
Nassau Boulevard 7:38
Stewart Manor 7:40
Floral Park 7:43
Bellerose 7:34
Queens Village 7:46
Hollis 7:49
Jamaica 7:53
Kew Gardens 7:57
Forest Hills 7:59
Woodside 8:04
New York Penn 8:12

The 4-minute difference between local and express travel time between Jamaica and Penn Station comes from the fact that the intermediate stations are for the most part in slower zones than 130 – only at Forest Hills is there enough of a distance to get up to 130, and only west of the station, not east. Erratum: although it is true the stations are in slow zones, I wrote this paragraph thinking there are four intermediate stations, where of course there are only three; 4/3 = 80 seconds per stop, which comes from rounding artifacts.

The Hempstead Branch has a 1.5-km single-track segment starting west of Hempstead and ending east of Garden City. It is quite slow; the 25 km/h curve just north (west) of Country Life Press has geometry good enough for 50 km/h without any superelevation (cant deficiency would be 150 mm), and with 150 mm superelevation would be good for 70. Replacing that entire 25-50 km/h segment with 70 km/h saves about a minute of travel time.

Babylon Branch:

Babylon 7:04
Lindenhurst 7:08
Copiague 7:10
Amityville 7:12
Massapequa Park 7:15
Massapequa 7:17
Seaford 7:19
Wantagh 7:21
Bellmore 7:24
Merrick 7:26
Freeport 7:29
Baldwin 7:31
Rockville Centre 7:34
Lynbrook 7:37
St. Albans 7:43
Jamaica 7:48
Kew Gardens 7:52
Forest Hills 7:54
Woodside 7:59
New York Penn 8:07

I arbitrarily chose the Ronkonkoma departure time to be 7:00, and then chose the Hempstead Branch schedule to allow a timed transfer at Jamaica. The five-minute offset for the Babylon Branch should be suggestive of the proposed frequency: off-peak, every ten minutes on the Babylon Branch (possibly every twenty but also every twenty on the West Hempstead Branch), every ten minutes on the Hempstead Branch (possibly every twenty but also every twenty on the Central Branch to East Garden City), and every ten minutes on the Main Line, with each of the Ronkonkoma and Port Jefferson Branches getting a train every twenty minutes. The Atlantic Branch trains should run every twenty minutes per branch, with a three-way timed transfer with the Main Line and Hempstead Branch. Off-peak, the Babylon Branch doesn’t transfer to anything else, so there is no need to worry about its at-grade conflict at Jamaica.

What’s Going on with Hudson Tunnel Cost Overruns?

Twenty-five billion dollars. The New York region’s political heavyweights – Andrew Cuomo, Chris Christie, Chuck Schumer, Cory Booker, Bill de Blasio – all want new Hudson tunnels, without any state funding for them; Schumer is proposing federal funding and a new interstate agency, parallel to the existing Port Authority, and a total budget of $25 billion. This is the highest figure I have seen so far; Amtrak still says $16 billion and Cuomo says $14 billion, and it’s likely the Gateway tunnels are indeed about $16 billion, while the remainder is for associated projects, such as fully four-tracking the line from Newark to the tunnel portal, a distance of about 11 kilometers. It is not my intention to criticize the cost; I’ve done that before.

Instead, I would like to point out that each time Gateway is the news, there usually seems to be a fresh cost escalation. Is it a $10 billion project? A $14 billion project? A $16 billion project? Or a $25 billion project? And what is included exactly? Amtrak does not make it clear what the various items are and how much they cost; I have not seen a single cost estimate that attempts to establish a baseline for new Hudson tunnels without the Penn Station South component, which would provide a moderate short-term boost to capacity but is not necessary for the project. The articles I’ve seen do not explain the origin of the $25 billion figure, either; it may include the tunnel and full four-tracking of Newark-New York, or it may include additional scope, for example Amtrak’s planned vertical circulation for a future (unnecessary) deep cavern for high-speed rail (see picture here).

The main issue here, the way I see it, is the interaction between public trust and political self-aggrandizement. It is common in all aspects of Israeli governance for new ministers to announce sweeping changes and reorganizations, just to remind the country that they exist and are doing something; this generally makes it harder to implement gradual reforms, and makes it completely impossible to do anything by consensus. Implementing a plan that was developed by consensus over many years makes one a bureaucrat; leaders change everything. In the US, this is the case not everywhere in government, but at least within public transportation infrastructure.

As we see in the case of Schumer’s call for a new interstate authority, the changes a heavyweight politician makes in order to appear as a leader have nothing to do with real problems that the project may have. Solving those problems requires detailed knowledge of the project at hand, which is the domain of bureaucrats and technocrats, and not of heavyweight politicians. Even a heavyweight who understands that there is a problem may not know or care about how to fix it: for example, Christie used the expression “tunnel to Macy’s basement,” invoking the deep cavern, to explain why ARC was wasteful, but chose to cancel the project rather than to remove the cavern and restore a track connection from the tunnel to Penn Station, which was in the official ARC Alt P plan until it was cut to limit the cost overruns. Managing a project is hard, and is, again, the domain of technocrats. The heavyweight will grandstand instead, regardless of whether it means canceling the project, or proposing an entirely new layer of government to build it.

As for trust, let us look at the benefits of new Hudson tunnels. The traditional, and least objectionable, is added capacity: the existing tunnels are currently at capacity during rush hour, and there’s much more demand for rail travel from New Jersey to Manhattan than they can accommodate. We can measure this benefit in terms of the combination of increased ridership from more service from more suburban areas, reduced crowding, and possibly slightly higher speeds. As a crude estimate of this benefit, current New Jersey Transit ridership at Penn Station is 87,000 per weekday in each direction. Doubling capacity means roughly doubling ridership, which would come from a combination of induced demand and diversion of traffic from cars, Port Authority buses, and commuter rail-PATH connections. This means the new tunnel can expect about 175,000 new commuter rail trips per weekday. At $10,000 per weekday trip, which is about average for very large non-US cities’ subway extensions, this justifies $1.75 billion. At $20,000, about the same as the projection for Grand Paris Express, Crossrail, and Second Avenue Subway Phase 1, all of which are justified on grounds of ridership and capacity on parallel lines, this is $3.5 billion. At $40,000, about the same as old projections for Second Avenue Subway Phase 2, which I used to analyze de Blasio’s Utica subway proposal, this is $7 billion. A $25 billion budget corresponds to a cost per rider well into the range of airport connectors.

Now, I’d like to think that informed citizens can look at these costs and benefits. At least, the fact that public transit projects only cost as much per rider as Gateway if they’re airport connectors (thus, of especial interest to the elites) or if something very wrong happened with the ridership projections, suggests that there is, normally, a ceiling to what the political system will fund. Even at $14-16 billion, the two states involved and the federal government groaned at funding Gateway, speaking to the fact that it’s not, in fact, worth this much money. In contrast, a bigger project, with bigger benefits, would be funded enthusiastically if it cost this much – for example, California already has almost this much money for high-speed rail, counting Prop 1A funds that are yet inaccessible due to the requirement of a 50/50 match from other sources.

Against this background, we see scare stories that Gateway must be built for reasons other than capacity and ridership. The old tunnels are falling apart, and Amtrak would like to shut them down one track at the time for long-term repairs. The more mundane reality is that the tunnels have higher maintenance costs than Amtrak would like since each track can only be shut down for short periods, on weekends and at night. This is buried in technical documents that don’t give the full picture, and don’t give differential costs for continuing the present regime of weekend single-tracking versus the recommended long-term closures. The given cost for Sandy-related North River Tunnel repairs is $350 million, assuming long-term closures, and it’s unlikely the present regime is billions of dollars more expensive.

I am reminded of the Tappan Zee Bridge replacement: the existing bridge has high maintenance costs due to its age and poor state, but the net present value of the maintenance cost is $2.5 billion and that of the excess maintenance cost is less, both figures well below the replacement cost. The bridge itself is structurally sound, but in popular media it is portrayed as structurally deficient. This relates to the problem of heavyweight politicians, for the Tappan Zee Bridge replacement is Cuomo’s pet project.

More fundamentally, who can trust any claim Amtrak makes about the structural soundness of tunnels? It says a lot that, when I asked on Twitter why transportation authorities do not immediately shut down unsafe pieces of infrastructure, various commenters answered “politics,” and on one (I believe James Sinclair) suggested that Amtrak order an emergency closure of one of the Hudson tunnel tracks just to drive home the point that new tunnels are necessary. I would like to stress that this is not Amtrak or a heavyweight proposing that, but the mere fact that commenters can seriously talk about it is telling. Most of the writers and commenters on the US transit blogosphere are very progressive and hate the Republicans; I have not seen a single comment recommending that the Democrats steal elections, fudge official statistics to make the party look more successful, or arrest Republican politicians on trumped-up charges, because in the US (and other first-world democracies), this is simply not done, and everyone except conspiracy theorists recognizes it. But politicizing the process of deciding which infrastructure projects are necessary for safety purposes and which are simply service expansions is normal enough that people can propose it half-seriously.

This brings me back to the issue of what I want the politicians to do, and what I expect them to do. What I want them to do is to be honest about costs and benefits, mediate between opposing interests (including different agencies that fight turf battles), and make decisions based on the best available information. This would necessarily limit costs, since, from the point of view of a member of Congress, if they get $25 billion for a piece of infrastructure then they cannot get $25 billion for another priority of theirs. They don’t do that, not in the US, and I’ve learned not to expect any better, as have the voters. Instead of working to make $25 billion go a longer way (to put things in perspective, I expect my regional rail tunnel proposal to cost $15-20 billion, at Crossrail 2 costs), Schumer is working to make $25 billion to sound like it’s going to a bigger deal than the new Hudson tunnels actually are.

None of this is a secret. American voters have learned to expect some kind of machine-greasing and politicking, to the point of losing the ability to trust either the politicians or the agencies, even in those cases when they are right. The result is that it’s possible to stretch the truth about how necessary a piece of infrastructure is, since people would believe or disbelieve it based on prior political beliefs anyway, and there is no expectation that the politicians or public authorities making those claims will have to justify them to the public in any detail. Lying to the public becomes trivially easy in this circumstance, and thus, costs can rise indefinitely, since everyone involved can pretend the benefits will rise to match them.

Why Labor Efficiency is Important

In North America, commuter trains run with conductors, often several per train. On most systems they walk the entire length of the train to check every passenger’s ticket, whereas on a few, namely in California, they do not do that anymore, but there are nonetheless multiple conductors per train. In addition, the scheduling is quite inefficient, in that train drivers do not work many revenue hours. I investigated what effect this has on operating costs, and it turns out that the effect on the marginal operating costs, which are important for off-peak service, is large: on the LIRR and Metro-North, nearly fivefold improvements in revenue train-hours per on-board employee (driver or conductor) are possible, which would halve the marginal operating cost per train-km. The bulk of this post is dedicated to explaining the following breakdown of variable operating costs:

train costs

The National Transit Database has figures for service in car-km and car-hours for a variety of US transit agencies. In New York State, the Empire Center has lists of every public employee’s position and pay, which we can use to figure out the average pay of a train driver and conductor and the productivity of their labor. The NTD numbers are as of 2011, so I will use the number of employees of 2011, but the pay per employee of 2014 (at any rate, there have been no major service changes since 2011, so numbers are similar). In 2011, the LIRR averaged 5,000 car-hours per driver-year, and Metro-North averaged 4,000; the LIRR runs longer trains than Metro-North, so the figure for both railroads appear to be about 500 train-hours per driver-year. Both railroads had a little bit more than 2 conductors per driver on average (2.14 Metro-North, 2.47 LIRR). The average pay of a driver, as of 2014, is $109,000 on the LIRR and $120,000 on Metro-North, whereas the average pay of a conductor is $112,000 on the LIRR and $96,000 on Metro-North.

From this, we can piece together the average operating cost of commuter rail derived from on-board labor, per train-hour: $771 on the LIRR, $714 on Metro-North. Assuming 8 cars per train (and again, the LIRR tends to run longer trains), this is around $90-95 per car-hour. According to the NTD, the average operating cost of both was about $550 per car-hour in 2011, but this includes fixed costs, such as management and rolling stock. As we will see, variable operating costs are much lower.

As a digression, I’d like to point out that the peaky schedule of commuter rail contributes to the low productivity of the drivers. Crew schedules include substantial gap time between trips, and occasionally, especially on low-frequency diesel branches, they deadhead. That said, the subway’s number of revenue train-hours per driver is not materially different. For higher figures, one must leave New York. Toei got about 700 revenue hours per driver when I last checked, but I can no longer find the reference. On the London Underground, I do have fresh references, pointing in the same range: 76.2 million train-km per year at 33 km/h average speed (from TfL’s facts and figures), and a bit more than 3,000 train operators. In 2012, the last year for which there’s actual rather than predicted data (see also PDF-p. 7 of the TfL Annual Report), there were 720 revenue hours per train driver. This is in tandem with a less peaky schedule than in New York: although the average speed is barely higher than that of the New York subway, as reported in the NTD, the trains travel about 180,000 km per year (see fact 149 here), twice as long as in New York. In Helsinki, metro trains run every 10 minutes all day on each branch, every day, without any extra peak service, contributing to even higher utilization: the schedules show 65,000 revenue-hours per year, whereas a factsheet from 2010 shows 75 metro drivers, for a total of 867 revenue hours per driver. In both the UK and Finland, average hours per employee are marginally shorter than in the US; London Underground drivers have 36-hour workweeks.

The importance of this computation is not just to highlight that 44-73% improvement in revenue-hours per employee is possible, but to point out that, on the margins, adding off-peak service would make crew schedules more efficient, since higher frequency would reduce the need to deadhead and to wait between trains. This means that, although the average operating cost may be about $750 per train-hour, the marginal cost is lower, even without changes to work rules.

Suppose now that trains run without conductors, using proof-of-payment as on light rail lines, even ones in North America, and on countless commuter rail systems in Continental Europe. Suppose also that there are 720 revenue-hours per driver, and that a driver is paid $115,000 per year. This means that running extra trains would not cost $90-95 in on-board labor per car-hour, but only $20, a nearly fivefold improvement. At Helsinki’s level of productivity, a nearly sixfold improvement to $16.60 is possible. At the LIRR’s present average speed of 50 km/h (compared with 53 on New Jersey Transit and 59 on Metro-North), the fivefold improvement based on London Underground productivity would cut the average cost per car-km from $1.80-1.90 to $0.40; at a higher but still realistic 67 km/h, it’s a cut from $1.35 to $0.30. A large majority of this cut comes from eliminating conductors, which, by itself, would cut costs threefold, but raising driver productivity would allow an additional cut of 30-40%. I again stress that the marginal cost is lower than the average cost computed here, since less peaky schedules come with simpler crew scheduling; more off-peak service would by itself cut the average cost, which means its marginal cost would be quite low.

Let us now look at other variable costs than on-board labor. Two years ago, I did this computation for high-speed rail, and found that, provided the schedules did not have extra rush hour service, operating expenses would be very low. We can do the same computation for commuter rail, and note that the lower speeds imply that operating and maintenance costs are spread across less passenger-km, raising costs. Let us consider train maintenance, cleaning, and energy.

I do not have information about train maintenance costs on commuter rail. Instead, I will use those of high-speed rail, for which standards are higher. As I noted in my computation from two years ago, the reference here is California HSR’s 2012 Business Plan, which aggregates these figures from around the world on PDF-p. 136. Maintenance costs per train-km are $4.47 for the Tokaido Shinkansen (with 16-car trains) and $2.58 per the UIC (with what I assume are 8-car trains), both in 2009 dollars. These figures cluster around $0.30 per car-km in 2009 dollars, or $0.30-35 per car-km in 2014 dollars.

With cleaning, there is some information about commuter rail: the Empire Center has lists of coach cleaners on Metro-North (there are 314) and their pay (on average, a little less than $50,000 a year). This seems high given the amount of service Metro-North runs – about $0.15 per car-km. Shinkansen trains are cleaned on a seven-minute turnaround in Tokyo, using one cleaner per standard-class car; this includes tasks that are not required on commuter rail, such as flipping seats to face forward. A cleaner making $30 per hour cleaning a single car per 15 minutes, with each train cleaned once per 150 km roundtrip, would cost $0.05 per car-km. I suspect that part of the low productivity of Metro-North cleaners is again a matter of low off-peak frequency – Shinkansen cleaners work almost continuously – but I don’t have comparative data to back this up; New York City Transit pays even more per cleaner per car- or bus-km, but this is on much lower average speed, and per car- or bus-hour, it pays about $6.40, vs. about $8.90 for Metro-North. I’m going to pencil in $0.10 per car-km as the cost of cleaning.

Energy costs we can compute from first principles. This is easier than for HSR, since commuter trains travel at such speed that a large majority of their energy consumption is in acceleration, rather than cruising. The explicit assumptions I am making is that the top speed is 130 km/h (the two main LIRR lines are mostly 80 mph territory), each car weighs 54 metric tons (the LIRR M7s weigh 57.5 and the Metro-North M8s even more, but this is very high by international EMU standards, thanks to FRA regulations), the average distance between stations is 4 km (the LIRR’s average is less than that if all trains make all stops and more if there are some express trains), and the track resistance per unit of train mass is the same as for the X 2000, for which data exists on PDF-p. 64 of a thesis on tilting trains. Regenerative braking is assumed to exactly cancel out with losses in transmission. Train acceleration performance is assumed to be like that of the FLIRT, which would take about a kilometer to accelerate to line speed and have about 2 km of cruising before slowing down for the stop; the M7 has inferior performance, but this would reduce energy consumption since trains would spend more time at lower speed.

With the above assumptions, each acceleration, cruise, and deceleration cycle between stations consumes about 13 kWh, of which 10 kWh is required to accelerate the train to top speed, and the other 3 are for overcoming track resistance. See rough computations in a subthread on California HSR Blog starting with this comment, and bear in mind the initial comment made a large computational error. As for April of this year, transportation electricity costs in the state are $0.1245 per kWh, giving us about $1.60 per 4-km interstation, or $0.40 per car-km.

Overall, those three items are $0.80 per car-km. This means that going from paying train crew $1.35 per car-km to paying them $0.30 per car-km represents halving of direct marginal operating expenses: it means going from $2.15 to $1.10 per car-km. Finally, let us add management costs, which are not exactly marginal costs, but do grow as the workforce grows, since more employees require supervisors. At RENFE, we can extract 0.27 support and management employees per operations employee from the data on PDF-p. 46 of its 2010 executive summary. On the Helsinki urban rail network, the corresponding figure is 0.34 as per the factsheet referenced above. This affects train crew, cleaning, and maintenance staff, but not energy. If this means 30% extra costs, this means going from $2.675 to $1.31 per car-km – again, we see costs are halved.

The off-peak LIRR fare is 15 cents per kilometer at long distances (14 to Ronkonkoma, but much more at shorter distances, for example 21 to Hicksville). If the marginal cost of running off-peak service is $1.31 per car-km, it means a car needs to have 9 passengers without season passes on it paying 15 cents per km for the trip to break even. If it’s $2.675, it needs 18. Passengers who commute off-peak and get season passes for those commutes also contribute, but less – a monthly pass for Ronkonkoma is $377, which at 46 trips a month is 10 cents per kilometer. It is not hard to have 9 passengers even on a long train, or even 13 (at the lower rate of season passes); Ronkonkoma itself is a park-and-ride, where this is less likely, but high enough passenger volumes as far as Mineola and Hicksville and all over the Babylon Branch are quite likely. If the required minimum is 18, let alone 26, this is substantially harder.

I harp on North American mainline rail operations for a variety of antiquated practices, but the on-board overstaffing is by far the worst. While improvement in train driver productivity can occur as a natural byproduct of improvement in off-peak frequency, getting rid of conductors is not so easy. It means a fight with the unions over job losses. Some of the required layoffs can be mitigated by retraining conductors as train drivers and running more service, but this would not boost service hours by a factor of 5; on the Ronkonkoma Branch, the peakiest of the three long LIRR lines, boosting off- and reverse-peak frequency to half the peak frequency would only increase train service by a factor of about 1.8.

I am not an expert on labor relations, so I do not know if any solution barring a prolonged SEPTA-style strike could work, alone or in combination. One possibility would be to commit to reducing working hours in the next five or ten years instead of hiking pay; working hours would be gradually reduced to core Western European levels, with 35-hour workweeks and 6 weeks of paid vacation, and hourly pay would rise as scheduled while annual pay would be frozen. Another possibility is that the MTA would help laid off employees find private-sector work, as happened in the 1980s with Japan National Railways (see PDF-pp. 103-4 of a handbook on rail privatization). This possibility requires implementing the reform at a time of wage growth and low unemployment, when private-sector work is easier to find, but the US is posting strong job growth numbers nowadays and is projected to keep doing so for at least another year.

But whatever happens, the most important reform from the point of view of reducing marginal off-peak service provision costs is letting go of redundant train crew. Halving the variable operating costs is exactly what is required to convert the nearly empty off-peak trains from financial drains to an extra source of revenues, balancing low ridership with even lower expenses. This would of course compound with other operating efficiencies, limiting the losses of branch lines and turning the busier main line trains into profit centers. But nowhere else is there the possibility of cutting costs so much with one single policy change as with removing conductors and changing the fare enforcement system to proof-of-payment.

Update 7/31: first, check comments below about maintenance costs: as far as I can tell from poorly presented Empire Center data, they are about 2.5 times higher, for both trains and the infrastructure, than the maintenance costs of high-speed rail. Although the effect of reducing those costs to conventional HSR level is larger than the effect of eliminating conductors, the details of reducing maintenance costs are far more delicate than those of eliminating conductors and running trains more often so that train drivers have less downtime.

Second, there is a small error in the above calculations: the figure of $90-95 in crew salary per car-hour is based on two conflicting assumptions. To get to $771 per train-hour on the LIRR, I assumed the LIRR ran 10-car trains. To get down to the $90-95 range, I assumed 8-car trains; 10-car trains would make this $77/hour. If we redo the entire calculation with 10-car trains, still with HSR maintenance costs, then instead of a cut from $2.675/car-km to $1.31/car-km, improved labor efficiency would cut costs from $2.415/car-km to $1.21/car-km. This is based on exact LIRR salaries, whereas the original calculation assumes hybrid LIRR/Metro-North salaries, and Metro-North pays drivers better than the LIRR.

Now, trains are somewhat longer at the peak than off-peak. If off-peak service is already with 8-car trains, and the average number of conductors is constant, then the original calculation (a cut from $2.675 to $1.31) still holds. After all, the salaries of train drivers and conductors are the same no matter how long the train is. But the number of conductors is not constant – let’s say it is proportional to train length, so 8-car LIRR trains have 2 conductors instead of 2.47, just as Metro-North’s average number of conductors per train is shorter than the LIRR’s, in tandem with its shorter consists. This changes the calculation to a cut from $2.535 (reflecting fewer conductors than in the original calculation) to $1.31. Observe that no matter what assumption we use, the operating cost cut coming from removing conductors and using drivers more efficiently is about 50%, give or take 1-2%.

Penn Station Elimination Followup

Several commenters, both here and on Streetsblog, have raised a number of points about my proposal to eliminate above-ground Penn Station and reduce the station to a hole in the ground. A few of those points are things I’d already thought about when I wrote that post and didn’t want to clutter; others are new ideas that I’ve had to wrestle with.


On Streetsblog, Mark Walker says, “Getting on a train at Penn is not like using the subway. Instead of a train that runs every five minutes, you’re waiting for a train that runs once per hour (more or less),” implying nicer waiting areas and lounges are needed. My proposal, of course, does not have dedicated waiting areas. (That said, there’s an immense amount of space on the platforms under the escalators, which could be equipped with chairs, tables, and newsstands.)

However, I take exception to the notion that when the train runs every hour, passengers wait an hour. When I lived in Providence, a few trips to Boston, New Haven, and New York taught me the exact amount of time it’d take me to walk from my apartment to the train station: 21 minutes. I learned to time myself to get to the station 2 minutes before the train would leave, and as I recall, I missed the train twice out of maybe 30 trips, and one of those was when I had a lot of luggage and was in a taxi and couldn’t precisely gauge the extra travel time. Walking is that reliable. People who get to Penn Station by subway have to budget some extra time to account for missed subway trains, but from much of the city, including the parts of the CBD not within walking distance from Penn, the required spare time is less than 10 minutes. Moreover, Penn is at its most crowded at rush hour, which is precisely when subway frequency is the highest, and people can reliably time themselves to within less than 5 minutes.

Outlying train stations in Switzerland are deserted except a few minutes before a train shows up, because the connecting transit is all timed to meet the train. This is of course inapplicable at very large stations with many lines, but the modes of transportation that most Penn Station users take to the station are reliable and frequent, if you can even talk of frequency for walking. The result is that the amenities do not need to be extravagant on account of waiting passengers, and do not need to be more than those of a busy subway station in a busy area.


Several commenters raised the idea of shelter. One option, raised by James Sinclair, is an arched glass roof over the station, on the model of Milan. This involves above-ground infrastructure, but the arched structure is only supported at the margins of the compound, which means that the primary feature of a hole-in-the-ground station, the lack of anything that the track area must support the weight of, is still true. I do not think it’s a bad idea; I do, however, want to raise three additional options:

Do nothing. A large proportion of the usable area of the platforms would be located under the walkways above, or under the escalators and staircases. Having measured the depth more precisely, through Plate 14 here, I found it is 13 meters from street level to top of rail, or 12 from street level to platform level, translating to 21 meters of escalator length, plus 2.2-2.5 meters on each side for approach (see page 23 here). About 16 of those 21 (18.5 out of 25.7, counting approaches) meters offer enough space for passengers to stand below the escalators, leading to large areas that could be used for shelter, as noted in the waiting section above.

Build a simple shelter. Stockholm-area train stations have cheap corrugated metal roofs over most of the length of their platforms. These provide protection from rain. Of course those roofs require some structural support at the platform, but because they’re not supposed to hold anything except rainwater, those supports are narrow poles, easy to move around if the station is reconfigured.

Build a street-level glass pane. This may be structurally intricate, but if not, it would provide complete shelter from the elements on the track level, greatly improve passenger circulation, and create a new public plaza. But in summer, the station would be a greenhouse, requiring additional air conditioning.

Note that doing nothing or building a simple shelter would not protect any of the track level from heat or cold. This is fine: evidently, open-air stations are the norm both in cities with hotter summers than New York (Milan is one example, and Tokyo is another) and in cities with colder winters (for example, Stockholm). Passengers are usually dressed for the weather anyway, especially if they’re planning on walking to work from Penn or from the subway station they’re connecting to.


Multiple commenters have said that public art and architecture matter, and building spartan train stations is unaesthetic, representing public squalor. I agree! I don’t think a hole-in-the-wall Penn Station has to be drab or brutalist. It can showcase art, on the model of the mosaics on the subway, or the sculptures on the T-Bana. It can use color to create a more welcoming environment than the monotonous gray of many postwar creations, such as the Washington Metro. The natural sunlight would help a lot.

But more than that, the walkways themselves could be architectural signatures. The best way to build them without supporting them on the track level is some variant on the arch bridge – either the classical arch bridge (which would require three or four spans), or a through-arch. This gives a lot of room to turn the bridges into signature spans. The design work would raise their cost, but short pedestrian bridges tend not to display the same cost structure as massive vehicular ones; the Bridge of Strings, a Calatrava-designed light rail bridge on a line that cost far more to build than light rail should cost, was $70 million for 360 meters. The walkways would not carry light rail, and would be about 140 or 150 meters in span.


Commenters both here (Caelestor) and on Streetsblog (Bolwerk, Matthias, C2check) have brought up transit-oriented development as a reason to allow a tall building on top of the station. With respect, I think on top of a train station is exactly the wrong place to build a tower. Let’s Go LA has an explanation for why the engineering for air rights is so complicated, although he stresses that Penn Station and Grand Central, which were built with the expectation of future high-rise air rights, are exceptions. I’ll add that Penn Station track simplification would also remove many crossovers and switches, making it easier to build air rights. That said, the track spacing is not friendly to the column spacing he proposes.

In New York, the tallest and most expensive recent private-sector office tower on solid ground, the Bank of America Tower, cost around $6,000 per square meter of floor space, in today’s money. Some of the luxury residential towers are more expensive; so are the new World Trade Center buildings, e.g. One World Trade Center was $12,000 per m^2. But the office towers cluster in a specific band of cost, around $2,500 to $5,000 per square meter, with taller towers generally more expensive. The Hudson Yards air rights towers cost in the $10,000-14,000 per square meter range, as much as One World Trade Center. Contrary to Bloomberg’s promises of windfall property tax revenues as his justification for the 7 extension, the city has had to offer tax abatement to encourage developers to build at those prices. Amtrak’s plan for Penn Station South assumes the block immediately south of Penn Station would cost $769 million to $1.3 billion to acquire; when I roughly computed its floor area by counting floors per building, I got 100,000 m^2, which means the price of real estate in that area, $7,700-13,000/m^2, is no higher and may be lower than the construction cost of air rights towers.

In contrast, some sites on firm ground immediately surrounding Penn Station are ripe for redevelopment. The block south of Penn Station, as noted above, has about 100,000 m^2, for a block-wide floor area ratio of 6.7. The Empire State Building’s floor area ratio is 33, so replacing the block with closely spaced supertall towers would require developers to burn just 20% of their profit on acquiring preexisting buildings. To the north of Penn Station, the two sites at 7th and 8th Avenues, flanking One Penn Plaza, are flat; so is nearly all of the western part of the block northeast of Penn, between 33rd and 34th Streets and 6th and 7th Avenues. Eighth Avenue is not developed intensely at all in that latitude – it only becomes important near Times Square. Supertall buildings surrounding Penn Station could even be incorporated into the station complex: railroads using the station might decide to lease offices in some of them, and the exteriors of some of those buildings could incorporate large clocks, some signage, and even train departure boards.


TheEconomist, who has had some truly out-of-the-box ideas, raises a very good point: how to phase the deconstruction of Penn Station in ways that allow service to continue. I don’t have a complete answer to that. Arch bridges, in particular, require extensive falsework, which may complicate matters. However, a general phase plan could consist of knocking down the above-ground buildings, then removing the upper concourse (leaving only the lower), and then removing arms of the lower concourse one by one as the walkways above them are built.

Passenger Throughput

In comments here, people have suggested several alternatives to my proposal to reconfigure Penn Station to have 12 tracks and 6 island platforms between them. There should be 6 approach tracks, as I outlined here: southern approach tracks, combining new Hudson tunnels with a link to Grand Central (which I call Line 2); central tracks, combining the preexisting Hudson tunnels with the southern East River Tunnels (Line 1); and northern tracks, combining the realigned Empire Connection and West Side Yard with the northern East River Tunnels (Line 3).

In my view, each approach track should split into two platform tracks, flanking the same platform. In this situation, there is no need to announce track numbers in advance, as long as the platform is known. Stockholm does this on the commuter lines at Stockholm Central: the northbound lines use tracks 15 and 16 and the southbound lines use tracks 13 and 14, with a platform between each of these track pairs, and until a few minutes before a train arrives, it’s signed on the board as “track 13/14” or “track 15/16.”

The compound looks 140 or 150 meters wide; the maps are unclear about to what extent Penn extends under 31st and 33rd, but according to a diagram Joey shared in comments, it extends quite far, giving 150 meters or even a bit more. Under my proposal, this is enough for 6 platforms of 17 or 18 meters. It sounds like a lot, but it isn’t, especially on Line 3, where Penn Station is the only CBD train station, which implies entire trains would empty at Penn in the morning rush hour. (Line 2, which I expect to be the busiest overall because it’d serve both Penn and Grand Central, is the one I expect to have the least platform crowding problems, precisely because it’d serve both Penn and Grand Central.)

Staircases should be 3 meters wide. Escalators with 1-meter steps have 1.6-meter pits; their capacity is theoretically 9,000 passengers per hour, but practically only 6,000-7,000. Clearing 30 entire trains per hour, filled to seating capacity with 4 standees per square meter of standing space, requires moving about 75,000 passengers per hour. (Per meter of train length, this is comparable to the 4/5 trains and the RER A at their peaks.) With 6 access points, this requires 2 up escalators per access point. The minimum is then 3 escalators, running 2-and-1 at the peak; 4 is better.

In comments, Ari Ofesvit proposes the Spanish solution, which I’ve discussed in previous posts. I’m now convinced it is not the right solution, simply because it compels platforms to be too narrow (about 8.6 meters), which has room for exactly half of what a standard platform twice the width would have, without the possibility of running 4 escalators 3-and-1 at the peak. My comment in that post has more detail, albeit with the assumption that the compound is 140 meters wide.

Fbfree proposes something else: more platforms for intercity trains. Giving intercity trains more platforms (as is done in Stockholm, which has just two approach tracks to the south) gives them more time to dwell; unfortunately, it also narrows the platforms for the regional trains, precisely the ones that can expect the most crowding. Even a single-track platform would take up space out of proportion to the number of passengers it would serve.

Pedestrian throughput is, at the maximum, 81 people per meter of walkway width per minute; this assumes two-way flow, but the numbers for one-way and multiway flow aren’t too different. This is a little less than 5,000 per meter-hour. An escalator bank with two up escalators then needs almost 3 meters of unobstructed platform width on one side (the other side can be used as overflow, but most passengers would use the side of the platform the train discharged them on). This is easy to supply with a 4-escalator bank on a 17-meter platform (there would be 3.8 meters); on an 8.6-meter Spanish platform, there’s only one up escalator per bank, so half the width is required, and is indeed obtainable. But if there are extra platforms for intercity trains, this becomes more strained.

For maximum throughput, it is necessary to minimize separation between escalators on the platform, down to about 6 meters plus approaches, in order to allow wider walkways, which in this case would make the walkways about 25 meters wide. The point here is that the walkways have to have very high pedestrian capacity, since each of them is fed by escalators from all platforms. At 25 meters, the capacity is about 15% less than that of two up escalators per access point (121,500 vs. 144,000), which is fine since some platforms (Line 2 in both directions, Line 3 eastbound in the morning and westbound in the afternoon) would not have so much traffic. But putting in elevators would disrupt this flow somewhat.

I see two ways to increase capacity in the future, if train traffic warrants it: first, build the glass floor/ceiling I outlined above, in the shelter section. This is the simplest possibility. Second, build three more walkways, midway between 7th and 8th Avenues and the two walkways already discussed, and have each walkway or avenue serve only half the platforms – one serving eastbound platforms, one serving westbound platforms. At this point the station would be half-covered by walkways, if they are all about 24 meters wide, but the walkways could be narrowed; as long as they are longer than 15 meters, any passenger arriving on a platform by any of the included access points would be sheltered by the walkway serving platforms in the opposite direction. Elevators should go from each walkway to each platform still, which would facilitate transfers, but the workhorse escalators would spread the load among different walkways.


I’d originally thought that the walkways could host retail and food concessions. The calculation in the preceding section suggests that this wouldn’t be possible, unless the walkways are widened beyond the escalators, with concessions on the outside. Every meter of walkway width would be required for passenger circulation. Even information pamphlets might be restricted to the very edges of the walkways; train departure boards would have to be mounted in the air, for example on the support cables if the through-arch option were chosen for the walkways.

However, there is ample room directly beneath the escalators, staircases, and walkways. With the caveat that escalators of such length need an extra midway support point, they would still have a lot of space underneath: 15-16 meters with sufficient clearance for people to stand comfortably (say, at least 2.5 meters of clearance above); with the upper approaches and the walkways, this is 60-62 meters of largely unobstructed space, for a 60*10 space that could be used in almost any way. Even in the 5-6 meters with less clearance above to the escalator, it’d be possible to use the space at least partly – for example, for sitting, or for bathrooms, the minimum clearance is reduced (I’m writing this post from my apartment, where the ceilings slope down, and the ceiling height above my couch is about 1.5 meters).

There would be two such 60*10 spaces per platform, plus two smaller spaces, near 7th and 8th Avenues, depending on exact placement of access points to the subway. This gives us twelve 60*10 spaces. I doubt that they could ever host high-end concessions, such as full-service restaurants: passengers would probably not go out of their way, to a platform that they weren’t planning on using. This means newsstands could succeed, but not much else; food would have to be shunted to the streets, and presumably restaurants would pay extra to locate right outside the compound. In lieu of concessions, those spaces could host sundry uses, including additional circulation space, information pamphlets, busker performance space, waiting areas for passengers, public art displays, and waiting areas for train crew and cleaners.

Eliminate Penn Station

Note: this is a somewhat trollish proposal, but I do think it should be considered.

New York Penn Station is a mess. Its platforms are infamously narrow, with only enough room for single-direction escalators, leading to overcrowding during peak hours, as passengers scramble to find an up escalator or a staircase. Its two concourses are confusing and cramped, and have claustrophobic low ceilings. Trains’ track assignments are only announced minutes in advance (as at other major US stations), leading to last-minute passenger scrambles to get onto the platforms. Everyone with an opinion, from the city’s architect community to the Regional Plan Association to Amtrak, wants to build an alternative. Let me propose something simpler and cheaper, if uglier: eliminate all above-ground structures, and reduce Penn Station to a hole in the ground.

Most of the preexisting plans for Penn Station do not do anything about the track level. It’s assumed that the tracks will remain narrow, that trains will not run reliably enough for consistent track assignments, and that dwell times will remain high. The architects’ proposals involve a nice station headhouse to make passengers feel important. Amtrak wants to decamp to a nice headhouse at Moynihan Station, again to make its passengers feel important, and add a few extra tracks without fixing the existing ones. The RPA proposal is heavy on redevelopment but says nothing about moving trains in and out more efficiently. Only Penn Design’s proposal says anything about consolidating platforms, in addition to constructing a headhouse, but the need to maintain a pretty headhouse places constraints on the ability to move tracks and platforms.

Eliminating the headhouse moves the focus from making passengers feel important to getting passengers in and out as fast as possible. Most importantly, it means there’s no need for girders and columns all over the track level; they support the buildings above the station, including the headhouse, and would not be needed if the station were a simple open cut. Those girders make it hard to move the tracks and platforms – the only reasonable option if they are kept is to pave over pairs of tracks between platforms to create very wide platforms, which would not be well-aligned with the approach tracks.

In the hole in the ground scenario, the two blocks from 7th to 8th Avenue, from 31st to 33rd Streets, would have no above-ground infrastructure. This requires demolishing Two Penn Plaza and Madison Square Garden. Two Penn Plaza is a building of 140,000 m^2, in a city where the private sector builds office towers of such size for about $750 million (at least when they’re not above active railyards); the city has been making noises about moving Madison Square Garden, although in 2013 it extended its lease by ten years. The tracks and platforms would thus be in the open air, and even from the depth of the platforms, passengers could see the surrounding buildings, just as they can in the open cut west of 9th Avenue, just before trains head into the North River Tunnels.

The two-block compound would be trisected by a pair of wide walkways, as wide as a Manhattan street, parallel to 7th and 8th Avenues. Each of the two walkways would have an access point in each direction toward each platform; with the current narrow platforms this means single-direction escalators, but as tracks would be moved and platforms widened, this would be a pair of wide single-direction escalators flanking a wide staircase. There would be an additional access point heading west out of 7th Avenue and one heading east out of 8th, for a total of six per platform. This is an improvement over the current situation, in which the number of access points ranges from four to six, excluding the LIRR’s West End Concourse, which is west of 8th and thus excluded from this discussion; see diagram here. Penn Station’s tracks are about 14 meters below street level; with 30-degree escalator angles, this means that the escalators would be 24 meters long plus short approaches, say 28 meters total, and this provides adequate separation between access points on the platforms as well as on the two walkways, although unfortunately the spacing on the platform would not be even. For disabled access, elevators would be provided at 7th and 8th Avenues and on both walkways.

The main functions of a train station would be devolved to the surrounding streets and the two walkways. Large clocks, mounted on the high-rise towers next to the station, would show the time. Screens posted over the entire compound would show train departure and arrival times and track assignments. The walkways, and the sides of 7th and 8th Avenues facing the compound, would have ticket-vending machines, selling tickets for all railroads using the station; if the platforms were widened, then there would be room for TVMs and some retail on the platforms themselves. There might even be room for some kiosks on the walkways and food trucks on the streets and avenues. Large ticket offices are not required, and small ones can fit either on the walkways or in a building storefront on the perimeter of the compound.

The technological advances of the last half-century or so have largely made station headhouses obsolete. Train stations used to have telegraph operators; they no longer do. They used to have mail sorting space; mail is now carried by air and road, or electronically. TVMs allow passengers to obtain tickets without buying them at ticket offices, and nowadays e-tickets are making TVMs somewhat obsolete as well. Checked baggage is largely a thing of the past. Transportation companies that aim at low costs, including low-cost airlines and intercity express buses, barely have stations at all: intercity buses pick up at curbs, while low-cost airlines often prefer budget terminals with reduced infrastructure. As far as possible, this is the way forward for train stations as well. Recall that my proposal for a Fulton Street regional rail station followed the same logic, using the street as its mezzanine. This is the way forward for Penn Station, too.

On Penn Station South

There’s an article in the New York Times by its architecture critic Michael Kimmelman, making a forceful case for the Gateway Project’s necessity. Like nearly all transit activists in New York, I think new Hudson tunnels are the top infrastructure priority for regional rail; like nearly all transit activists, I groan at Amtrak’s proposed budget, now up to $16 billion (but unlike most, I think that it should not be built unless costs can be brought down – I’d peg their worth at $5 billion normally, or somewhat more in a crunch). I would like to explain one specific piece of scope in Amtrak’s plan that can be eliminated, and that in fact provides very little transportation value: Penn Station South.

Like all proposals for new Hudson tunnels, Gateway is not just a simple two-track tunnel between New Jersey and Penn Station. No: the feuding users of Penn Station all think it needs more tracks. The rejected ARC proposal had a six-track multilevel cavern, and Gateway has Penn Station South, a proposal to demolish an entire block south of Penn Station and build seven additional platform tracks. The cost of just the real estate acquisition for Penn South: $769 million to $1.3 billion, at today’s prices. Trains using the preexisting tunnels would have to go to the preexisting Penn Station tracks, which I will call Penn Classic; trains using the new tunnels could go to either Penn Classic or Penn South, but the junction is planned to be flat. For illustration, see PDF-p. 12 of a press release of the late Senator Lautenberg, and a clearer unofficial picture on

As a result of this proposed track arrangement, train services would initially suffer from the capacity limitations of flat junctions. Like Penn Station’s tracks 1-4, Penn South would be terminal tracks. This means that the only service possibilities are as follows:

1. Schedule all through-trains, such as Amtrak trains, through the preexisting tunnels.

2. Do not schedule any westbound trains from Penn South or any eastbound trains entering the preexisting Penn Station tracks: for example, no westbound trains from Penn South in the morning peak, and no eastbound trains entering Penn Classic in the afternoon peak.

3. Schedule around at-grade conflicts between opposing traffic.

Option #2 is impossible: Penn South has 7 tracks. If trains can enter but not leave in the morning, there will be room for 7 trains entering in the morning, a far cry from the several dozens expected. Option #1 is the better remaining option, but is ruled out, since Amtrak wants to use the new tunnels for its own trains. This leaves option #3, which restricts capacity, and complicates operations. Thanks to Amtrak’s imperialism, taking over regional rail projects for its own ends, Penn South has negative transportation value relative to just building new tunnels to Penn Classic’s tracks 1-4 (the transportation value relative to doing nothing is of course positive).

I emphasize that the negative transportation value of Penn South comes entirely from Amtrak’s involvement. The same infrastructure, used by passenger rail agencies that were more interested in providing high-quality public transportation than in turf wars, would have positive transportation value. However, as I explained to Kimmelman, this positive transportation value is low, and does not justify even the cost of real estate acquisition, let alone that of digging the station.

Briefly, as can be seen in the diagrams, the interlocking between the two new tunnel tracks and Penn’s eleven terminal tracks – tracks 1-4 of Penn Classic, and all of Penn South – is exceedingly complicated, which would limit approach speed, and not provide much flexibility relative to the number of tracks provided. This is to a large extent unavoidable when two approach tracks become eleven station tracks, but it does lead to diminishing returns from extra tracks. This is one of the reasons it’s easier if trains branch: it’s easier to turn 12 trains per hour on two tracks than to turn 24 on four (although both are done in Tokyo – indeed, the Chuo Line still turns 27 tph on two tracks).

Avoiding large crunches like this at urban terminals a benefit of through-running. This is hard to realize initially unless the new tunnel is what I call ARC-North. It’s still possible to through-run trains, pairing the new tunnels with the southern pair of East River Tunnels and the old tunnels with the northern pair, but it requires a lot of diverging moves at interlockings, limiting speed. Penn Station plans should be built with a long-term goal of simple moves at interlockings, to (slightly) increase speed and capacity and reduce maintenance needs.

However, it’s still possible to square the circle by requiring trains to turn fast on tracks 1-5 of Penn Station (track 5 splits to a terminating end and an end that runs through east of New York). Tokyo would be able to turn a full complement of 24 trains per hour on these tracks. Most other cities would not. However, as somewhat of a limiting European case, the RER A turns a peak train every 10 minutes on single track at Le Vésinet-Le Pecq, the next-to-last station on the Saint-Germain-en-Laye branch; Le Pecq has two through-tracks (also hosting a train every 10 minutes) and one terminal track. See map and schedule. This does not scale to 24 tph on four tracks; somewhat tellingly, those trains do not continue to the terminus, which is a three-track station, implying turning 12 tph on three tracks is problematic. The RER E turns 16 tph at the peak at Haussmann-Saint Lazare, a four-track city terminus, pending under-construction extension of the line to the west, which would make it a through-station.

If we accept 16 tph as the capacity of new Hudson tunnels without new Penn Station tracks, then the question should be what the most cost-effective way to raise future capacity is. An extra 9 tph, the equivalent of the difference between 16 tph and the 25 tph that the current tunnel runs and that Amtrak projects for Gateway, is within the capabilities of signaling improvements and better schedule discipline. Again looking to Paris for limiting cases, the combined RER B+D tunnel between Gare du Nord and Châtelet-Les Halles runs 32 tph, without any stations in the tunnel (the RER B and D use separate platforms), while the moving block signaling-equipped RER A runs 30 tph on its central segment, with stations (as do the S-Bahn systems of Berlin and Munich). The RER E was planned around a capacity of 18 tph, but only 16 tph are run today. 18+32 = 50 = 25+25. France is not Japan, with its famous punctuality: French trains are routinely late, and as far as I remember, the RER B has on-time performance of about 90% based on a 5-minute standard, worse than that of Metro-North in its better months.

More importantly, dropping Penn South from the Gateway plan saves so much money that it could all go to through-running, via a new tunnel from tracks 1-5 to Grand Central. This is about 2 km of tunnel, without any stations; in a normal city this would cost $500 million, the difficulty of building in Midtown canceling out with the lack of stations, and even at New York construction costs, keeping the tab to $2 billion should be doable. The 7 extension is $2.1 billion, but includes a station; an additional proposed infill station at 10th Avenue, dropped from the plan, would’ve $450 million, giving us $1.6 billion for about 1.6 revenue route-km, rising to 2.3 km including tail tracks – less than a billion dollars per kilometer.

At $2 billion, the premium over $1 billion of impossible-to-cut real estate acquisition costs is down to $1 billion. It’s unlikely the construction cost of Penn South could be just $1 billion, without general reductions in city construction costs, which would enable the Penn-Grand Central link to be cheaper as well. Each Second Avenue Subway station is about a billion dollars, and those stations, while somewhat deeper than Penn Station, are both much shorter and narrower than a full city block. The result is that building a Penn-Grand Central link is bound to be cheaper than building Penn South, while also providing equivalent capacity and service to a wider variety of destinations via through-running.

One difficulty is staging the tunnel-boring machines for such a connection: building a launch box involves large fixed costs, especially in such a crowded place as Midtown. One of the reasons Second Avenue Subway and the 7 extension are the world’s most expensive subway project per kilometer is that they’re so short, so those fixed costs are spread across less route length. The best way to mitigate this problem is to build the link simultaneously with the new Hudson tunnels. The staging would be done on Penn’s tracks 1-4, whose platforms would be temporarily stripped; the construction disruption involved in the tunnels is likely to require shutting those tracks down anyway. Depending on the geology, it may even be possible to use the same tunnel-boring machine from New Jersey all the way to Grand Central.

This doesn’t save as much money – the Penn-Grand Central link is extra scope, with its own costs and risks. However, unlike Penn South, it is useful to train riders. Penn South allows terminating trains at Penn Station more comfortably, without having to hit the limit of large-city terminal capacity; the Penn-Grand Central link creates this capacity, but also lets riders from New Jersey go to Grand Central and points north (such as Harlem, but also such more distant commercial centers as Stamford), and riders from Metro-North territory go to Penn Station and points west (such as Downtown Newark).

Normally, I advocate unbundling infrastructure projects, because of the tendency to lump too many things together into a single signature plan, which then turns into political football, a sure recipe for cost overruns. However, when projects logically lead to one another, then bundling is the correct choice. For example, building an entire subway line, with a single tunnel-boring machine and a single launchbox, usually costs less than building it in small stages, as is the case with Second Avenue Subway. New Hudson tunnels naturally lead into a new tunnel east of Penn Station, regardless of where this tunnel goes; and once a tunnel is built, its natural terminus is Grand Central.

Transit-Oriented Airports

There are recurrent discussions of how to best connect public transportation to airports; I, too, have made my comments both on how desirable such connections are and how to best build them. What I think is less discussed is how to build airports in a way that makes it easier to serve them by public transit. Airport authorities spend billions every few decades rebuilding terminals, sometimes even moving the entire airport to a new location, but they never consider how to do so in a way that makes transit access the easiest; this means airport access is done by car, or another high-cost scheme must be implemented to bring a rail line to the airport. Now that there is a plan to replace the Newark AirTrain for a billion dollars, just twenty years after it was first built, it’s worth discussing what capital projects on the airport side should facilitate transit access.

First, recall from previous discussions on this blog that the best way to serve a major international airport is by a mainline train, which is capable of both providing fast service to the CBD (where most inbound air travel is headed) and to many suburbs (which have outbound travelers).

However, we can say more: it is better, other things being equal, for the airport to be on the way, rather than at the end of a line. If the airport must be at the end of a line, it should not be far from where the line would’ve ended if the airport were not there. For example, LaGuardia is a few kilometers east of the end of the Astoria Line, which can be extended. Vancouver’s airport is on a short branch of the Canada Line, which would have been built to Richmond Centre even without the airport.

An even better example would have been Floyd Bennett Field, just past where the Utica subway should end; there were plans in the 1930s to build such a subway, but not only were they never realized, but also Mayor LaGuardia preferred to build the airport that currently bears his name, for easier auto access to Manhattan than Bennett Field had. Thus we can catalog the decision to open the new airport and close Bennett Field as bad for transit access, and oppose similar moves when cities today propose them. The best location for an airport, from the point of view of transit access, is near a subway or commuter rail station, ideally close enough that no further people mover is required.

Let us now discuss internal airport design. I claim that, to maximize transit accessibility, airports should have just one terminal (or several terminals that can be served from the same station), or, failing that, one dominant terminal, as at such fortress hubs as Detroit, Frankfurt, and Charles-de-Gaulle. The reason is that trains are slowed down by additional stations, whereas cars are not slowed down by additional bays and driveways. Mainline trains, in particular, rarely make more than one stop at an airport, and in the cases I know of where they do, the airport is at the end of a branch (such as the RER B and the lines serving Narita), rather than on the way.

This introduces some tension into airport design. Large airport terminals are dendritic, to maximize the perimeter available for gates and jetways; in some cases, they feature satellite terminals, connected to the main terminal by underground passageways, people movers, or even landside buses (as at Charles-de-Gaulle). I encourage people to look at satellite images of Frankfurt, O’Hare, Atlanta, Zurich, and Charles-de-Gaulle. Frankfurt’s Terminal 1 is a kilometer from entry to the farthest branches to the west. This creates some demand for quicker small terminals, which are harder to serve by rail. In addition, the most efficient dendritic design has branches coming out from the center in every direction, except perhaps one direction for an access road; this makes it harder to be on the way of a rail line.

I think it is telling that the single- or dominant-terminal design is less common at airports that are not a single airline’s fortress hub. Haneda and Narita have two major terminals each, one used by Japan Airlines and one used by ANA. Madrid has four terminals, one for Iberia and three connected ones, sharing a Metro station, for competitors, including several low-cost airlines. In all three cases, there are two train stations per line connecting to the airport (with the understanding that Narita has multiple lines, operating by competing railroads).

Usually, airports make an effort to group airlines by alliance. Thus Charles-de-Gaulle and Frankfurt put their respective dominant airlines and partners in their main terminals, and competing airlines in smaller terminals; and Narita makes sure to group Star Alliance airlines with ANA and Oneworld airlines with JAL. Among the largest airports of Europe, Heathrow is the big exception, since it organizes terminals by alliances but splits Oneworld between Terminal 5 for British Airways and Terminal 3 for the rest.

In the US, this is not common, with some exceptions such as Detroit and JFK’s Terminals 7 and 8. This is because the US does not permit connecting air passengers to transit its airports. All passengers arriving at a US airport from a foreign airport without preclearance, even ones in transit, have to go through immigration, collect their bags, go through customs, recheck their bags, and go through security again; between the inconvenience and the real risk of literally being disappeared, few people connect in the US between two foreign countries. Hub terminals elsewhere facilitate easy transfers by maintaining large international areas where passengers can walk between gates, and keeping the passport controls between the international and domestic terminals short. Regardless, even with the vagaries of American immigration policy, it is easier to connect without having to go between terminals; moreover, for passengers leaving the US rather than arriving, the situation is if anything easier than in Europe since there’s no passport control at exit.

Let us now apply these concepts to New York’s two main international airports. Newark may be a fortress hub, but it is not configured as one; United and its Star Alliance partners are sprawled across all three terminals. Moreover, the terminals are just far enough from the commuter rail station to require a people mover. Since it’s better for an airport to be on the way, and have just a single terminal, what this suggests is that Terminal C should be lengthened to approach the train station.

There is currently a plan to replace Terminal A, for $1-1.25 billion of construction budget and $2 billion total development budget. Under this single-terminal paradigm, the terminal should not be redeveloped. Instead, it should be demolished, and replaced by extensions of Terminal C to the west, with additional concourses and piers both to the north and to the south, replacing the current road loop serving the terminals. People would arrive by road via US 1 or by rail via the commuter rail station. Security checkpoints would be conducted at a building just west of Route 1, and the airside terminal’s western end would be an overpass over the road. Rail passengers would have enclosed overpasses to the checkpoints; there would not be any need for a people mover, only moving walkways given the distance between the station and the terminal’s current eastern end. There is enough space for the new concourses to also replace Terminal B, which is of similar vintage to Terminal A.

At JFK, the situation is different. First, it is not a fortress hub. Its top three carriers – JetBlue, Delta, and American – are all reasonably happy with their terminals (Delta’s terminal is 4, not 2, which it is abandoning). British Airways is considering abandoning Terminal 7 and joining American at Terminal 8. Consolidating the airlines that use Terminal 1 at Terminal 4 is impossible until the US resolves its endless immigration lines, which at Terminal 4 are often longer than an hour.

Second and more fundamentally, the transit access situation there is good enough. JFK is far from any subway or commuter rail line, so the only way to serve it by rail is by a dedicated people mover, of which the AirTrain is not bad. The connection to Jamaica approaches the “be on the way” maxim well, since Jamaica is central to the LIRR network and has fast service to Manhattan on the subway as well. Some transit advocates in the region periodically propose a direct subway or commuter rail line to replace the AirTrain connection, but such plans always run against network design issues, since the branching is set up in a way that reduces frequency to Jamaica, a more important station. Given that there must be some people mover connection, traveling in a circle among the terminals is not terrible; straightening the route has some benefits, but the cost of rebuilding the infrastructure is almost certainly too high to be justified.

Update: James Sinclair argues convincingly that the Newark AirTrain is not really at the end of its life, but Port Authority is saying that to justify spending billions of dollars on a better replacement, including either a PATH extension to the airport station (which is largely dead) or an extension of the AirTrain to Newark Penn Station, as a sweetener for United.

Bergenline Avenue and New Hudson Tunnels

The main street of Hudson County from Jersey City north is Bergenline Avenue. It passes through the densest cities in the US (denser than New York, which is weighed down by outer-urban areas), and hosts frequent jitney service. Last decade, New Jersey began to document jitney service in North Jersey, producing a report in 2011 that identified major corridors; Bergenline is the busiest, with a jitney almost every minute, and almost as frequent additional jitney and New Jersey Transit service on the northern part of the route running into Manhattan via the Lincoln Tunnel. This was discussed extensively on Cap’n Transit’s blog three years ago, and I thought (and still think) Bergenline should eventually get a subway line. I bring this up because of a critical tie-in to Bergenline’s transit service: new mainline Hudson tunnels. If the new tunnels are built to host regional rather than intercity trains, then they should also make a stop at Bergenline to allow for easier transfers from the buses to Manhattan.

Unfortunately, there are no estimates of ridership on the Bergenline buses. The 2011 report did rough counts of passengers per hour passing through a single point, but that is not directly comparable to the usual metrics of ridership per day or per year. Moreover, the report assumed there are 16 passengers per jitney, where, at least in Cap’n Transit’s experience, the jitneys on Bergenline are considerably larger, in the 20-30 passenger range. Either way, they’re smaller than full-size buses, which means we can’t just compare the frequency on Bergenline with that on busy New York bus corridors. However, a bus in that size range almost every minute, both peak and off-peak, is bound to have comparable ridership to the busiest buses in New York: the single busiest, the M15, runs articulated buses every 3 minutes at the peak and every 4 off-peak.

There are several corridors heading into Manhattan. According to the summary on the report’s PDF-page 51, Bergenline has jitneys heading into Port Authority every 2-4 minutes at the peak, and New Jersey Transit buses (routes 156 and 159) every 5 minutes. Paralleling Bergenline, JFK Boulevard East has a jitney every 4-5 minutes (with larger vehicles than on Bergenline), and a New Jersey Transit bus almost every minute at the peak (route 128). There is also very frequent New Jersey Transit bus service, more than once per minute between routes 156, 159, and 166, running nonstop to Port Authority at the peak; unlike the jitneys, New Jersey Transit bus service is extremely peaky, with the combined routes 156 and 159 dropping to a bus every 15 minutes, and the Boulevard East routes (165, 166, 168) dropping to a bus every 9 minutes.

From the New Jersey Transit schedules, peak-hour buses spend 18-19 minutes getting into Port Authority from Bergenline, and 14 minutes getting into Port Authority from Boulevard East. In contrast, a train station located under Bergenline would have service to Penn Station taking about 3 minutes. Trains go through the existing older tunnel at about 100 km/h, and the new tunnel could support at least the same speed, while a through-running service plan would simplify the Penn Station interlockings enough that trains could enter and leave the station at speed. Even allowing for transfer time and for additional wait times, which are very short at the peak anyway, this represents an improvement of more than 10 minutes.

It goes without saying that the service should be frequent and affordable. The fare should be the same as on the subway, with free transfers. There’s some precedent in that PATH charges similar fares to the subway, but free transfers, a basic amenity in regions with integrated transportation planning, would be new to New York. At the peak, all trains would stop at Bergenline, since there’s not enough capacity to mix stopping and nonstop trains on the same tracks given expected traffic. But even off-peak, all trains should continue stopping at Bergenline – as well as at Secaucus – in order to maintain adequate frequency. Given how dense and close to Manhattan the area is, 10 minutes is the maximum acceptable headway, which corresponds to the combined off-peak frequency of all New Jersey Transit trains into Penn Station today.

While the busiest trunk line does not even enter Manhattan, the presence of fast, frequent regional rail with competitive fares is likely to change travel patterns. This is not the same as transit-oriented development: I am not assuming a single new building on top of the Palisades. Instead, some people who live and work in northern Hudson County would shift over time to working in New York, thanks to improved transportation links. In parallel, people working in New York would move to cheaper housing in Hudson County. In the other direction, companies that want to attract reverse commuters might locate to the area around the new station. The overall effect would integrate northern Hudson County into the core better, turning it into more of a bedroom community, like Brooklyn and Queens, while simultaneously concentrating its employment around the station. The upshot is that this station would already come equipped with a huge installed base of feeder buses, which run the route already without a connection to Manhattan. A longer-range plan to build a subway under Bergenline, from Fort Lee to Journal Square, would further integrate the entire west bank of the lower Hudson into the city core.

This tilts the best traffic plan for new tunnels away from Amtrak’s Gateway plan and back toward New Jersey Transit’s various flavors of ARC. First, it’s easier to build the station while the tunnel is excavated than to build the station in the preexisting tunnel. At the same time, whichever tunnel has the station should be the one without intercity trains: all peak trains would have to stop at the station for capacity reasons (there’s no room for bypass tracks), and this would slow down intercity trains unacceptably. Put together, this means Amtrak should stay in the old tunnels and all traffic in the new tunnels should be regional.

Second and more importantly, a high-grade new tunnel pair from New Jersey to Penn Station should also continue onward to Grand Central, with trains running through to Metro-North territory. The importance of through-running and good service to multiple urban nodes is greatest for local service and smallest for long-distance service. In Paris, the RER involves through-service for shorter-range commuter trains; the Transiliens, which terminate at the traditional terminal stations, serve farther-away suburbs. And in Tokyo, the local lines of the JR East network run through whereas the express lines either don’t or have only started doing so recently. The reason is similar to a pattern I mentioned before about airports: at long range, people only travel to the city for functions that their region lacks, and those are usually centered on the CBD, whereas at short range, people travel in all directions. The upshot of this discussion is that a Bergenline stop is likely to add many local travelers to the system, and they should get the service that’s more useful for their needs.

Of course, a good service plan will involve through-running in both the old and new tunnels. However, through-running is more valuable in the new tunnel, going to Grand Central, than in the old tunnel, going to Long Island and the Northeast Corridor. As a judgment call, I believe that through-running to Grand Central, Harlem, and the South Bronx connects to more neighborhoods than through-running to Sunnyside, Flushing, and Jamaica. It also has better subway connections, to the 4/5/6 if to nothing else, and local riders are accustomed to two-seat rides and subway connections. Finally, under a fuller regional rail plan, including service to Lower Manhattan, Grand Central has connections to Lower Manhattan and Downtown Brooklyn whereas Penn Station and Sunnyside don’t.

In contrast, Amtrak’s plan gets it exactly backward in proposing to use the Gateway tunnel for its own trains and some additional regional trains. The only advantage of this plan is that it would be possible for regional trains to maintain higher speed through the wider-diameter new tunnel (intercity trains could raise speeds more easily, since high-speed trains are pressurized to limit ear popping when they enter tunnels). But by hogging slots in the Penn Station-Grand Central tunnel, Amtrak would force many local and regional rail riders onto trains that do not serve their destination directly and do not have an easy transfer to it.

The only drawback of this plan is cost. The station would be located deep beneath the Palisades, complicating its construction. While the access shafts are not difficult – vertical bores for elevators are simply to build – the station itself would require blasting a cavern, or using a large-diameter bore. The cavern option is not cheap. I am not going to try coming up with a cost estimate, but I will note that the station caverns of Second Avenue Subway Phase 1, which are built cut-and-cover rather than blasted from inside, are around a billion dollars each. A large-diameter bore is more attractive, but is more expensive than twin small-diameter bores if there are no stations, and may well have difficulties emerging at the Manhattan end.

Without reliable estimates for either the incremental cost or the incremental ridership, I can’t say whether this is a cost-effective proposal. I suspect that it is, given the high ridership of the Bergenline buses and the high density of the region. Part of what makes an S-Bahn or RER system successful is its service to urban neighborhoods and not just suburbs and CBDs, and Bergenline could be a good addition to the system that the region should be building.

The Utica Subway

Last week, Bill de Blasio released a plan for New York’s future called OneNYC, whose section on subway expansion called for a subway under Utica Avenue in Brooklyn (PDF-pp. 45-46). The call was just a sentence, without mention of routing or cost or ridership projections, and no plan for funding. However, it remains a positive development; last year, I put the line at the top of a list of underrated subways in North America. Presumably the route would be a branch off the Eastern Parkway Line, carrying the 4, while the 3 continues to go to the current New Lots terminus.

The cost is up in the air, which means that people forming opinions about the idea don’t have the most important and variable number with which to make decisions. In this post, I am going to work out the range of cost figures that would make this a worthwhile project. This has two components: coming up with a quick-and-dirty ridership estimate, and arguing for a maximum acceptable cost per rider.

Before doing anything else, let us look at how much such a subway extension should cost, independently of ridership. Between Eastern Parkway and Kings Plaza, Utica is 6.8 km. The non-English-speaking first-world range is about $300 million to $3 billion, but around $1.4 billion, or $200 million/km, is average. Utica is a wide, relatively straight street, without difficult development alongside it. In fact, I’ve been convinced in comments that the line could be elevated nearly the entire way, south of Empire Boulevard, which would reduce costs even further. Normal cost should then be around $100 million per km (or $700 million), and even in New York, the JFK AirTrain came in at a $200 million/km. I doubt that an elevated solution could politically happen, but one should be investigated; nonetheless, a $1.4 billion subway would be of great benefit.

Now, let us look at ridership. Recall that Utica’s bus route, the B46, was New York’s third busiest in 2014, with 46,000 weekday riders. But two routes, Nostrand’s B44 and Flatbush’s B41, run parallel and provide similar service, and have 67,000 riders between them. Those numbers are all trending down, as residents gradually abandon slow bus service. A subway can realistically halt this decline and generate much more ridership, via higher speed: B46 limited buses average 13 km/h south of Eastern Parkway, but a new subway line could average around 35 km/h. Second Avenue Subway’s ridership projection is 500,000 per weekday, even though all north-south bus lines on Manhattan’s East Side combined, even ones on Fifth and Madison Avenues, total 156,000 daily riders.

Vancouver is considering replacing its busiest bus, the 99-B, with a subway. The 99-B itself has 54,000 weekday riders, the local buses on Broadway (the 9 and 14) have 43,000, and the 4th Avenue relief buses (the 4, 44, and 84) add another 27,000. Those are much faster buses than in New York: the 99-B averages 20 km/h, while the 44 and 84, running on less crowded 4th Avenue, average nearly 30 km/h west of Burrard. SkyTrain is faster than the New York subway since it makes fewer stops, so the overall effect would be similar, a doubling of travel speed, to about 40 km/h. The ridership projection is 250,000 per weekday in 2021, at opening, before rezoning (see PDF-p. 75 here). This represents a doubling of ridership over current bus ridership, even when the buses provide service SkyTrain won’t, including a one-seat ride from the Westside to Downtown and service along 4th Avenue.

In New York, as in Vancouver, the subway would provide service twice as fast as current buses. The distance between Nostrand and Utica Avenues is much greater than that between 4th Avenue and Broadway in Vancouver, so the analogy isn’t perfect (this is why I also support continuing Nostrand down to Sheepshead Bay). Conversely, the speed advantage of subways over buses is greater than in Vancouver. Moreover, Nostrand already has a subway, so actual demand in southeastern Brooklyn is more than what the B41, B44, and B46 represent. A doubling of ridership over bus ridership, to about 220,000, is reasonable.

For a quick sanity check, let us look at Nostrand Avenue Line ridership again. South of Franklin Avenue, the stations have a combined weekday ridership of 64,000 per weekday, as of 2014. But this is really closer to 128,000 daily riders, counting both boardings and alightings; presumably, few people ride internally to the Nostrand corridor. The Nostrand Avenue Line is 4.3 km long; scaled to length, we get 200,000 weekday riders on Utica.

Put together, a normal-cost Utica Line, with 200,000 weekday riders, would cost $7,000 per rider. This is quite low even by non-US standards, and is very low by US standards (Second Avenue Subway Phase 1 is about $23,000 according to projections, and is lower than most US rail lines).

As far as I’ve seen, from glancing at lines in large cities such as London, Paris, and Tokyo, the normal cost range for subways is $10,000-20,000 per rider. Paris is quite cheap, since its ridership per kilometer is so high while its cost per kilometer is not very high, keeping Metro extensions in the four figures (but Grand Paris Express, built in more suburban geography, is projected at $34 billion for 2 million daily passengers). Elsewhere in Europe, lines north of $20,000 are not outliers. If we set $25,000/rider as a reasonable limit – a limit which would eliminate all US rail lines other than Second Avenue Subway Phase 1, Houston’s light rail extensions, and Los Angeles’s Regional Connector – then Utica is worth $5 billion. A more generous limit, perhaps $40,000 per rider to allow for Second Avenue Subway Phase 2, would boost Utica to $8 billion, more than $1 billion per km. Even in the US, subways are rarely that expensive: the Bay Area’s lines are only about $500 million per km.

The importance of the above calculation is that it is quite possible that Utica will turn out to have a lower projected cost per rider than the next phase of Second Avenue Subway, a project for which there is nearly universal consensus in New York. The original cost projection for Second Avenue Subway’s second phase was $3.3 billion, but will have run over since (the projection for the first phase was $3.7 billion, but actual cost is nearly $5 billion); the ridership projection is 100,000 for each phase beyond the first, which is projected at 200,000. In such a situation, the line would be a great success for New York, purely on the strength of existing demand. I put Utica at the top of my list of underrated transit projects for a reason: the line’s worth is several times its cost assuming world-average per-km cost, and remains higher than the cost even at elevated American prices. The de Blasio administration is doing well to propose such a line, and it is nearly certain that costs will be such that good transit activists should support it.

What Happened to the RPA?

Last month, New York’s Regional Plan Association published a report, Overlooked Boroughs, proposing various transit improvements in New York outside the Manhattan core to complement the existing Manhattan-centric subway network. I’ve been thinking for a while what to say about the report. I don’t want to mock too much, since the RPA clearly tries to improve things. But the report falls short in every way, and plays into fads about buses. The one point of light is a brief mention of subways under Utica and Nostrand Avenues, but it is vague and doesn’t even make any of the maps the RPA is producing for additional rail and bus service. Even the RPA’s positive past contribution to the region’s transit proposals, Triboro RX, is replaced by the inferior Crossboro system. All this is on top of wooden analysis of preexisting transportation options.

The Analysis

The technical report talks about low transit usage for travel within the Outer Boroughs, which for the study’s purposes include Upper Manhattan. Figure 3 on page 7 breaks down mode choice as transit versus other modes. This works in Queens, but in Upper Manhattan and the South Bronx, car ownership rates are so low that local transit is competing with walking (and biking). In the Bronx in general, the mode share for borough-internal commutes is 40% transit and 36% car; in Brooklyn, the corresponding numbers are 42% and 32%. Eyeballing figure 3, Upper Manhattan’s transit share looks like 35%, but the car share is almost certainly much lower, given very low car ownership. This means there’s a huge volume of non-mechanized transportation in those regions.

The study does mention expanding bike infrastructure, on pp. 50-51, with an emphasis on bike share. However, its conclusion is directly at odds with the fact that non-mechanized transportation is quite popular in Upper Manhattan, the Bronx, and Brooklyn. It calls for incremental enlargement of the current system’s coverage, which consists of Manhattan south of 59th Street and the innermost parts of Brooklyn. It specifically warns against rapid expansion, “so as not to spread the program too thin,” and says the next areas for coverage should be the bridge landings in Brooklyn and Queens and the Upper East and West Sides. Inexplicably, low-income Bedford-Stuyvesant, which is adjacent to the current coverage area, is explicitly listed as a future phase and not a current priority.

A better proposal would call for rapid expansion of bike share and bike lanes; this costs money, but so does transit. Moreover, since the neighborhoods that would gain the most are low-income, the city should give some thought to how to make its bike share system easier to use for low-income residents. The current system requires a debit or credit card and puts a $101 security hold per pass. A city-subsidized system allowing qualified low-income residents to ride without a security hold is required; for example, the city could allow EBT cards to be used in lieu of a security hold, even if their holders then need to put in cash or a MetroCard to pay, in case the federal government disallows using the cards for biking and not just food stamps.

Then, a few pages after the analysis of intra-borough commutes, the report makes another mistake: on table 2, it lists mode shares for commutes between city boroughs and suburban counties, as well as likely transit options. Where commuter rail exists, it lists it as an option: thus, the Manhattan, Queens, or Brooklyn to Essex County rows list “subway to New Jersey Transit” as an option, despite the fact that New Jersey Transit is expensive and infrequent in the reverse-peak direction. Most likely, transit commuters from New York to Essex County work in or near Downtown Newark and take PATH, or at the airport and take a bus.

Now, the report does talk about commuter rail’s deficiency in attracting urban riders, both in the discussion surrounding tables 2 and 3 and in the proposal to improve commuter rail on pp. 49-50. But it says little about frequency for reverse commuting. Even when it does acknowledge the LIRR’s one-way peak service, it pulls its punches and only says it “recommends this project” (three-tracking the LIRR Main Line); proposing to instead do away with peak express service in order to permit reverse-peak service on the other track – as is practiced on the two-track segments of the Chuo Line – is beyond its scope. The punch-pulling is significant; as we will see over and over, the report repeatedly lets itself be defined by current practices and low-level current proposals.

Finally, the analysis of buses leaves something to be desired. The report talks at length about issues regarding span, frequency, and speed, on the list of nine characteristics that determine the attractiveness of transit. There’s no attempt to look systematically at what the busiest bus corridors in the city are. At some places, the corridors proposed match those of busy bus routes, for example the main crosstown routes in Brooklyn, the B35 and B6. At others, they neglect them entirely: as Alexander Rapp noted in comments recently, Grand Concourse, hosting the Bx1/2, is one of the busiest bus corridors in the city, even though it parallels the subway – it’s busier than Nostrand, which is now a Select Bus Service (SBS) route. The third busiest Bronx route, the Bx19, running on Southern to 145th in Manhattan, is also neglected.

We Just Call It “The Bus”

I think it’s Zoltána who said that what Americans call bus rapid transit, Londoners call “the bus.” As she noted in the past, three-door buses with all-door boarding are ubiquitous in Italy. German-speaking cities tend toward all-door boarding as well, as does Paris, but the buses usually have just two doors. All of this is years-old discussion, here and on related blogs such as Human Transit.

The significance of this is that it throws a wrench in any and all attempts to plan surface transit in New York around SBS, which is a bundle of features: enforced off-board fare payment, longer stop spacing, dedicated (but not physically separated) bus lanes. Vancouver engages in similar bundling with the B-Lines, but at least gets it right by not enforcing off-board fare payment: there are no machines printing tickets at any B-Line bus stop, but instead passengers can pay the driver at the front, or board from any door if they have a monthly pass or a transfer slip, which most do. But even Vancouver makes a mistake by requiring everyone to board from the front and pay the driver on all but a handful of bus lines. Vancouver, at least, establishes B-Line routes to mark where it considers building SkyTrain extensions in the future. In New York, it’s not about subway extensions; the planners really do think these features are special, and should be combined.

The RPA could have pushed for citywide off-board fare collection. Instead, it chose to smother any such push:

Set up off-vehicle fare payment using a proof of payment system. Passengers will not only board faster, but they will also be able to board using either front or back doors. However, the high cost of this option makes it impractical for system-wide implementation. Alternatively, the MTA should shift to touch or vicinity passes, the successor to the MetroCard, which is fast becoming obsolete.

First, the invocation of high cost in any plan that includes subway extensions, as this report does, is laughable. One-word replies to this point include any city where all buses already use proof of payment (POP), such as Paris, Berlin, Zurich, or Singapore. This is especially true now that the front end of smartcard technology is so cheap that there are top-up consumer items sold for $30. The cost of putting a card reader at every bus stop and at every bus door is, in 2015, trivial; what is not trivial is the cost of paying drivers to idle while bus riders are dipping their MetroCards at the front one by one.

If we accept citywide POP and bus stop consolidation – again looking at practices in Europe (and in Singapore), bus stops here are spaced every 400 meters and not 200-250 as in the US – then the rationale for SBS breaks down completely. All that’s left is corridors that require bus lanes, and those do not need to be continuous, as a bus can run partly on dedicated lanes and partly in mixed traffic.

Planning for the best corridors for specially upgraded surface transit requires thinking in terms of key bus corridors; the report does this because it assumes SBS is special, and the discussion with Alexander Rapp about Grand Concourse was about light rail. But if this is really just about bus lanes, then planning should be in terms of street segments. Bus lanes are required whenever there are busy buses on congested streets, and feasible when the streets are wide enough to permit car lanes and parking lanes in addition to the bus lanes. The importance of congestion means that a citywide bus lane map would be much more Manhattan-centric: potentially all Manhattan avenues and most two-way streets should have bus lanes since Manhattan traffic is so slow, even if there are key corridors elsewhere in the city with higher ridership.

At this point it’s useful to step back and think about relative advantages of surface transit (in this case buses) and rapid transit. Surface transit will always be slower, more expensive to operate, and far cheaper to deploy than rapid transit. This is why bus maps look like dense grids or meshes in every major city whereas subway maps only do in a small number of megacities.

The upshot is that there’s less need to force buses into a few key corridors. If New York were to build a subway or even light rail on a corridor, it would have to choose the routing in a way that would replace multiple parallel buses. For example, light rail on Tremont would replace both the Bx40/42 and the Bx36, which run on or parallel to Tremont in different parts of the Bronx. There’s no need to do that with bus-based transit: the Bx40/42 and the Bx36 can stay where they are. Route consolidation is only beneficial insofar as it boosts frequency, which means it’s required on minor routes but optional on major ones – this is why there’s a bus on every Manhattan avenue except Park, with no consolidation of the various one-way avenue pairs. The Bx40/42 runs every 10 minutes in the midday off-peak, and the Bx36 runs every 7-8 minutes, so there’s no need for a combined corridor.

Another key difference, ignored in the report, is that surface transit needs to run on straight, continuous streets whenever possible. Turns slow the bus down much more than they slow the subway (although they do increase the subway’s construction costs, since the subway would need to go under private property). This is partly because the bus is already slower, so the extra travel distance is more onerous, and partly because turning from one street to another requires red-light cycles that may not be easily eliminated via signal priority.

One upshot of this is that the report’s proposed bus map has some routes that are completely insane. Figure 14, on page 40, has two proposed new SBS routes in the Bronx: one paralleling the Bx36 and Bx40/42 in a circuitous manner, and going north-south in the East Bronx with several jogs and turns larger than 180 degrees. Nobody needs such circuitous routes.

Another upshot is the situation in Brooklyn. Brooklyn has five of the city’s top ten routes: the crosstown B35 and B6, and the radial B41 (Flatbush), B44 (Nostrand), and B46 (Utica). The latter three follow their streets nearly the entire way. The first two do not, as Brooklyn does not have continuously important crosstown arterial streets the way it has Flatbush, Nostrand, and Utica. Now, to be fair, the B6 is as fast as the three radials, all averaging 11 km/h on local buses and 12-13 on limited ones, but the B35 is much slower, 8 km/h local and 9 km/h limited; all average speeds are computed departing eastbound or northbound at noon. Between this and the B6’s somewhat zigzaggy route, the circumferentials are slowed more than the radials, which means rapid transit becomes more useful.

Enter Triboro RX, which appears in modified form (see below) in the report. Although it doesn’t closely parallel the B35 or B6, it provides a similar kind of service, and could poach significant ridership from both. This means that the introduction of rapid transit service there would make it less important to upgrade the B35 and B6 beyond the upgrades all other buses receive; conversely, such service would get much more ridership than we see today on buses, since it would offer such a large speed benefit. Of course the same is true of subway extension on Nostrand and Utica, but the rail bias over the existing 12-13 km/h options is a bit less than over a 9 km/h option; it’s only the easy tie-in to the 2, 3, 4, and 5 trains and the very high ridership of three closely parallel bus routes that make two subway lines pencil out.

Unfortunately, there’s no attempt at combined planning in the report. There’s no attempt to tie upgraded bus routes in Brooklyn and Queens to new transfer points created by Triboro. At the city’s other end, in the Bronx, Second Avenue Subway Phase 2 would make an East 125th Street terminus desirable for some Bronx buses; this is again not shown. Figure 14 on page 40 doesn’t show subway extensions, and figure 15 on page 44 doesn’t show SBS routes.

Finally, one notable inclusion is that of North Shore Branch SBS. Everything I could say about this I said three and a half years ago; it’s a terrible plan, and the fact that the RPA is going through with it instead of explaining why a second Staten Island Railway line would be better speaks volumes to how little the RPA is willing to come up with its own ideas instead of following whatever fads the city and MTA engage in.

Rail: Even When It’s Right, It’s Wrong

The report’s proposals for subway and commuter rail expansion have good kernels, but manage to make big mistakes on top of them, producing projects of limited transportation value. Here the RPA’s mistake is less overrelying on bad government planning (there is none as far as rail is concerned) and more overrelying on its own hype and that of similar organizations.

The plan for Second Avenue Subway is still in place. However, one key proposal regarding phasing worries me:

There is a strong argument to move quickly to build the north segment first as far as 116th Street, which would be relatively inexpensive since much of the tunnel is in place from earlier work, leaving the more expensive last piece to 125th Street for later. This report supports this argument.

Although in East Harlem, 116th Street is the key throughfare, a connection to 125th Street is crucial, for the transfer to Metro-North and the 4, 5, and 6 trains. It’s not even too much more expensive than a Phase 1.5 to 116th Street, since the 106th and 116th Street stations would still need to be dug, and the stations are the dominant part of Second Avenue Subway’s cost, three quarters of Phase 1 if I remember correctly.

Moreover, the report suggests various tie-ins, all on page 43: going west across 125th, going north into the Bronx, going south to Brooklyn via a new tunnel and taking over the Atlantic Branch of the LIRR. The first one would be golden, but isn’t even depicted on the associated map, figure 15 on page 44. As with the Nostrand and Utica subways discussed on the same page, the best ideas in the report are presented as afterthoughts and not depicted on any map. The Bronx extensions are harmless, but the routes shown on figure 15 are at times circuitous. The Atlantic Branch plan, fortunately not shown either, is the worst: the Atlantic Branch should be part of a modernized commuter rail plan. Despite the fact that the report does talk about commuter rail upgrades, it still considers cannibalizing a key route for a Second Avenue Subway extension.

The second key piece of rail infrastructure proposed, Triboro RX, is the RPA’s key contribution, dating back to 1996. Michael Frumin worked on this project and, together with Jeff Zupan, one of this report’s two authors, estimated its ridership at 76,000 commuters, each taking a roundtrip per weekday, for about 150,000 weekday boardings. Unfortunately, this report scraps many of the useful features of Triboro, replacing the line with Penn Design’s inferior Crossboro, which runs alongside the Northeast Corridor in the Bronx instead of completing the semicircle around Manhattan.

Moreover, for reasons I do not understand, the report widens the interstations on Triboro. The original plan called for a station every 800 meters, excluding the Hell Gate Bridge; including it, there would be about a station every kilometer. The current version of the route has a station every 1.8 km; even excluding the Bronx and Hell Gate portions, this is a station every 1.6 km. Broadway Junction, a key transfer point with connections to the A, C, and J, is deleted; trains run nonstop from New Utrecht to the Brooklyn Army Terminal; successive spokes in Brooklyn get no stations between them, even when the distance between the radial lines is such that most subway networks would put in a station in the middle.

Finally, commuter rail modernization falls flat. The RPA correctly calls for lower fares and higher off-peak frequencies – but then fails to follow through with demanding reductions in marginal operating costs. A discussion of high off-peak frequency and subway-competitive fares is a waste of time if each train is staffed with five conductors. A more reasonable number of conductors, zero, is required for this to financially pencil out.

But even if we ignore the costs, the plan does not look like a plan with modernized commuter rail. There are no infill stations proposed. High frequencies and mode-neutral fares would make Astoria a desirable commuter rail stop; but the stations mentioned on pp. 49-50 for Penn Station Access service are only the ones currently proposed in the Bronx, omitting Astoria. Similarly, despite wild plans, not depicted on maps, to construct a commuter rail branch on Utica, there’s no mention of simply adding a Utica stop to Atlantic Branch trains. Nobody is going to use Utica or Astoria for today’s fares or on today’s schedules, but frequent, cheap commuter rail service to these areas would be very popular.

All of the ideas proposed for rail are good, in principle. I’m glad that Second Avenue Subway is receiving priority, that Triboro is on this map, and that there’s talk of commuter rail modernization. But every when the RPA gets it right, it wrecks things with bad details about phasing, station placement, and lack of consideration of what commuter rail modernization would do to demand patterns.

Where are the Forward-Thinking Proposals?

The report simply cobbles together various proposals by organizations and politicians, without trying to turn them into a coherent whole: some bus upgrades here, some subway and commuter rail expansions there, no real attempt to even make the various modes work together. Even within each tranche, the report often rehashes current city plans, no matter how inappropriate.

Is the RPA thinking forward here? I don’t see any evidence of forward thought in the report. Where Paris is beginning construction on 200 kilometers of driverless rapid transit, mostly underground, the RPA is proposing 10 km of subway in future Second Avenue Subway phases and 40 km of rapid transit on existing right-of-way in Triboro RX. If New York could build subways at Paris’s prices, about $250 million per kilometer, Ile-de-France’s budget for Grand Paris Express, about $35 billion, would build the entirety of Second Avenue Subway eleven times over. There would be money for multiple radial and crosstown subway extensions and commuter rail tunnels (at Parisian costs, my commuter rail through-running tunnels would together be $20 billion or somewhat less); bus upgrades, done right, would show as a rounding error in streetscaping, and actually save money since higher speeds would reduce operating costs.

The Third Regional Plan did talk about things that other people were not proposing at the time. It had more Second Avenue Subway tie-ins, for one. Here all the RPA is doing is slapping its logo on a bad bus upgrade plan and reminding people that there’s a Second Avenue Subway project waiting to be finished. What happened to the RPA?