Category: Amtrak

Penn Station Elimination Followup

Several commenters, both here and on Streetsblog, have raised a number of points about my proposal to eliminate above-ground Penn Station and reduce the station to a hole in the ground. A few of those points are things I’d already thought about when I wrote that post and didn’t want to clutter; others are new ideas that I’ve had to wrestle with.

Waiting

On Streetsblog, Mark Walker says, “Getting on a train at Penn is not like using the subway. Instead of a train that runs every five minutes, you’re waiting for a train that runs once per hour (more or less),” implying nicer waiting areas and lounges are needed. My proposal, of course, does not have dedicated waiting areas. (That said, there’s an immense amount of space on the platforms under the escalators, which could be equipped with chairs, tables, and newsstands.)

However, I take exception to the notion that when the train runs every hour, passengers wait an hour. When I lived in Providence, a few trips to Boston, New Haven, and New York taught me the exact amount of time it’d take me to walk from my apartment to the train station: 21 minutes. I learned to time myself to get to the station 2 minutes before the train would leave, and as I recall, I missed the train twice out of maybe 30 trips, and one of those was when I had a lot of luggage and was in a taxi and couldn’t precisely gauge the extra travel time. Walking is that reliable. People who get to Penn Station by subway have to budget some extra time to account for missed subway trains, but from much of the city, including the parts of the CBD not within walking distance from Penn, the required spare time is less than 10 minutes. Moreover, Penn is at its most crowded at rush hour, which is precisely when subway frequency is the highest, and people can reliably time themselves to within less than 5 minutes.

Outlying train stations in Switzerland are deserted except a few minutes before a train shows up, because the connecting transit is all timed to meet the train. This is of course inapplicable at very large stations with many lines, but the modes of transportation that most Penn Station users take to the station are reliable and frequent, if you can even talk of frequency for walking. The result is that the amenities do not need to be extravagant on account of waiting passengers, and do not need to be more than those of a busy subway station in a busy area.

Shelter

Several commenters raised the idea of shelter. One option, raised by James Sinclair, is an arched glass roof over the station, on the model of Milan. This involves above-ground infrastructure, but the arched structure is only supported at the margins of the compound, which means that the primary feature of a hole-in-the-ground station, the lack of anything that the track area must support the weight of, is still true. I do not think it’s a bad idea; I do, however, want to raise three additional options:

Do nothing. A large proportion of the usable area of the platforms would be located under the walkways above, or under the escalators and staircases. Having measured the depth more precisely, through Plate 14 here, I found it is 13 meters from street level to top of rail, or 12 from street level to platform level, translating to 21 meters of escalator length, plus 2.2-2.5 meters on each side for approach (see page 23 here). About 16 of those 21 (18.5 out of 25.7, counting approaches) meters offer enough space for passengers to stand below the escalators, leading to large areas that could be used for shelter, as noted in the waiting section above.

Build a simple shelter. Stockholm-area train stations have cheap corrugated metal roofs over most of the length of their platforms. These provide protection from rain. Of course those roofs require some structural support at the platform, but because they’re not supposed to hold anything except rainwater, those supports are narrow poles, easy to move around if the station is reconfigured.

Build a street-level glass pane. This may be structurally intricate, but if not, it would provide complete shelter from the elements on the track level, greatly improve passenger circulation, and create a new public plaza. But in summer, the station would be a greenhouse, requiring additional air conditioning.

Note that doing nothing or building a simple shelter would not protect any of the track level from heat or cold. This is fine: evidently, open-air stations are the norm both in cities with hotter summers than New York (Milan is one example, and Tokyo is another) and in cities with colder winters (for example, Stockholm). Passengers are usually dressed for the weather anyway, especially if they’re planning on walking to work from Penn or from the subway station they’re connecting to.

Architecture

Multiple commenters have said that public art and architecture matter, and building spartan train stations is unaesthetic, representing public squalor. I agree! I don’t think a hole-in-the-wall Penn Station has to be drab or brutalist. It can showcase art, on the model of the mosaics on the subway, or the sculptures on the T-Bana. It can use color to create a more welcoming environment than the monotonous gray of many postwar creations, such as the Washington Metro. The natural sunlight would help a lot.

But more than that, the walkways themselves could be architectural signatures. The best way to build them without supporting them on the track level is some variant on the arch bridge – either the classical arch bridge (which would require three or four spans), or a through-arch. This gives a lot of room to turn the bridges into signature spans. The design work would raise their cost, but short pedestrian bridges tend not to display the same cost structure as massive vehicular ones; the Bridge of Strings, a Calatrava-designed light rail bridge on a line that cost far more to build than light rail should cost, was $70 million for 360 meters. The walkways would not carry light rail, and would be about 140 or 150 meters in span.

TOD

Commenters both here (Caelestor) and on Streetsblog (Bolwerk, Matthias, C2check) have brought up transit-oriented development as a reason to allow a tall building on top of the station. With respect, I think on top of a train station is exactly the wrong place to build a tower. Let’s Go LA has an explanation for why the engineering for air rights is so complicated, although he stresses that Penn Station and Grand Central, which were built with the expectation of future high-rise air rights, are exceptions. I’ll add that Penn Station track simplification would also remove many crossovers and switches, making it easier to build air rights. That said, the track spacing is not friendly to the column spacing he proposes.

In New York, the tallest and most expensive recent private-sector office tower on solid ground, the Bank of America Tower, cost around $6,000 per square meter of floor space, in today’s money. Some of the luxury residential towers are more expensive; so are the new World Trade Center buildings, e.g. One World Trade Center was $12,000 per m^2. But the office towers cluster in a specific band of cost, around $2,500 to $5,000 per square meter, with taller towers generally more expensive. The Hudson Yards air rights towers cost in the $10,000-14,000 per square meter range, as much as One World Trade Center. Contrary to Bloomberg’s promises of windfall property tax revenues as his justification for the 7 extension, the city has had to offer tax abatement to encourage developers to build at those prices. Amtrak’s plan for Penn Station South assumes the block immediately south of Penn Station would cost $769 million to $1.3 billion to acquire; when I roughly computed its floor area by counting floors per building, I got 100,000 m^2, which means the price of real estate in that area, $7,700-13,000/m^2, is no higher and may be lower than the construction cost of air rights towers.

In contrast, some sites on firm ground immediately surrounding Penn Station are ripe for redevelopment. The block south of Penn Station, as noted above, has about 100,000 m^2, for a block-wide floor area ratio of 6.7. The Empire State Building’s floor area ratio is 33, so replacing the block with closely spaced supertall towers would require developers to burn just 20% of their profit on acquiring preexisting buildings. To the north of Penn Station, the two sites at 7th and 8th Avenues, flanking One Penn Plaza, are flat; so is nearly all of the western part of the block northeast of Penn, between 33rd and 34th Streets and 6th and 7th Avenues. Eighth Avenue is not developed intensely at all in that latitude – it only becomes important near Times Square. Supertall buildings surrounding Penn Station could even be incorporated into the station complex: railroads using the station might decide to lease offices in some of them, and the exteriors of some of those buildings could incorporate large clocks, some signage, and even train departure boards.

Phasing

TheEconomist, who has had some truly out-of-the-box ideas, raises a very good point: how to phase the deconstruction of Penn Station in ways that allow service to continue. I don’t have a complete answer to that. Arch bridges, in particular, require extensive falsework, which may complicate matters. However, a general phase plan could consist of knocking down the above-ground buildings, then removing the upper concourse (leaving only the lower), and then removing arms of the lower concourse one by one as the walkways above them are built.

Passenger Throughput

In comments here, people have suggested several alternatives to my proposal to reconfigure Penn Station to have 12 tracks and 6 island platforms between them. There should be 6 approach tracks, as I outlined here: southern approach tracks, combining new Hudson tunnels with a link to Grand Central (which I call Line 2); central tracks, combining the preexisting Hudson tunnels with the southern East River Tunnels (Line 1); and northern tracks, combining the realigned Empire Connection and West Side Yard with the northern East River Tunnels (Line 3).

In my view, each approach track should split into two platform tracks, flanking the same platform. In this situation, there is no need to announce track numbers in advance, as long as the platform is known. Stockholm does this on the commuter lines at Stockholm Central: the northbound lines use tracks 15 and 16 and the southbound lines use tracks 13 and 14, with a platform between each of these track pairs, and until a few minutes before a train arrives, it’s signed on the board as “track 13/14″ or “track 15/16.”

The compound looks 140 or 150 meters wide; the maps are unclear about to what extent Penn extends under 31st and 33rd, but according to a diagram Joey shared in comments, it extends quite far, giving 150 meters or even a bit more. Under my proposal, this is enough for 6 platforms of 17 or 18 meters. It sounds like a lot, but it isn’t, especially on Line 3, where Penn Station is the only CBD train station, which implies entire trains would empty at Penn in the morning rush hour. (Line 2, which I expect to be the busiest overall because it’d serve both Penn and Grand Central, is the one I expect to have the least platform crowding problems, precisely because it’d serve both Penn and Grand Central.)

Staircases should be 3 meters wide. Escalators with 1-meter steps have 1.6-meter pits; their capacity is theoretically 9,000 passengers per hour, but practically only 6,000-7,000. Clearing 30 entire trains per hour, filled to seating capacity with 4 standees per square meter of standing space, requires moving about 75,000 passengers per hour. (Per meter of train length, this is comparable to the 4/5 trains and the RER A at their peaks.) With 6 access points, this requires 2 up escalators per access point. The minimum is then 3 escalators, running 2-and-1 at the peak; 4 is better.

In comments, Ari Ofesvit proposes the Spanish solution, which I’ve discussed in previous posts. I’m now convinced it is not the right solution, simply because it compels platforms to be too narrow (about 8.6 meters), which has room for exactly half of what a standard platform twice the width would have, without the possibility of running 4 escalators 3-and-1 at the peak. My comment in that post has more detail, albeit with the assumption that the compound is 140 meters wide.

Fbfree proposes something else: more platforms for intercity trains. Giving intercity trains more platforms (as is done in Stockholm, which has just two approach tracks to the south) gives them more time to dwell; unfortunately, it also narrows the platforms for the regional trains, precisely the ones that can expect the most crowding. Even a single-track platform would take up space out of proportion to the number of passengers it would serve.

Pedestrian throughput is, at the maximum, 81 people per meter of walkway width per minute; this assumes two-way flow, but the numbers for one-way and multiway flow aren’t too different. This is a little less than 5,000 per meter-hour. An escalator bank with two up escalators then needs almost 3 meters of unobstructed platform width on one side (the other side can be used as overflow, but most passengers would use the side of the platform the train discharged them on). This is easy to supply with a 4-escalator bank on a 17-meter platform (there would be 3.8 meters); on an 8.6-meter Spanish platform, there’s only one up escalator per bank, so half the width is required, and is indeed obtainable. But if there are extra platforms for intercity trains, this becomes more strained.

For maximum throughput, it is necessary to minimize separation between escalators on the platform, down to about 6 meters plus approaches, in order to allow wider walkways, which in this case would make the walkways about 25 meters wide. The point here is that the walkways have to have very high pedestrian capacity, since each of them is fed by escalators from all platforms. At 25 meters, the capacity is about 15% less than that of two up escalators per access point (121,500 vs. 144,000), which is fine since some platforms (Line 2 in both directions, Line 3 eastbound in the morning and westbound in the afternoon) would not have so much traffic. But putting in elevators would disrupt this flow somewhat.

I see two ways to increase capacity in the future, if train traffic warrants it: first, build the glass floor/ceiling I outlined above, in the shelter section. This is the simplest possibility. Second, build three more walkways, midway between 7th and 8th Avenues and the two walkways already discussed, and have each walkway or avenue serve only half the platforms – one serving eastbound platforms, one serving westbound platforms. At this point the station would be half-covered by walkways, if they are all about 24 meters wide, but the walkways could be narrowed; as long as they are longer than 15 meters, any passenger arriving on a platform by any of the included access points would be sheltered by the walkway serving platforms in the opposite direction. Elevators should go from each walkway to each platform still, which would facilitate transfers, but the workhorse escalators would spread the load among different walkways.

Concessions

I’d originally thought that the walkways could host retail and food concessions. The calculation in the preceding section suggests that this wouldn’t be possible, unless the walkways are widened beyond the escalators, with concessions on the outside. Every meter of walkway width would be required for passenger circulation. Even information pamphlets might be restricted to the very edges of the walkways; train departure boards would have to be mounted in the air, for example on the support cables if the through-arch option were chosen for the walkways.

However, there is ample room directly beneath the escalators, staircases, and walkways. With the caveat that escalators of such length need an extra midway support point, they would still have a lot of space underneath: 15-16 meters with sufficient clearance for people to stand comfortably (say, at least 2.5 meters of clearance above); with the upper approaches and the walkways, this is 60-62 meters of largely unobstructed space, for a 60*10 space that could be used in almost any way. Even in the 5-6 meters with less clearance above to the escalator, it’d be possible to use the space at least partly – for example, for sitting, or for bathrooms, the minimum clearance is reduced (I’m writing this post from my apartment, where the ceilings slope down, and the ceiling height above my couch is about 1.5 meters).

There would be two such 60*10 spaces per platform, plus two smaller spaces, near 7th and 8th Avenues, depending on exact placement of access points to the subway. This gives us twelve 60*10 spaces. I doubt that they could ever host high-end concessions, such as full-service restaurants: passengers would probably not go out of their way, to a platform that they weren’t planning on using. This means newsstands could succeed, but not much else; food would have to be shunted to the streets, and presumably restaurants would pay extra to locate right outside the compound. In lieu of concessions, those spaces could host sundry uses, including additional circulation space, information pamphlets, busker performance space, waiting areas for passengers, public art displays, and waiting areas for train crew and cleaners.

Eliminate Penn Station

Note: this is a somewhat trollish proposal, but I do think it should be considered.

New York Penn Station is a mess. Its platforms are infamously narrow, with only enough room for single-direction escalators, leading to overcrowding during peak hours, as passengers scramble to find an up escalator or a staircase. Its two concourses are confusing and cramped, and have claustrophobic low ceilings. Trains’ track assignments are only announced minutes in advance (as at other major US stations), leading to last-minute passenger scrambles to get onto the platforms. Everyone with an opinion, from the city’s architect community to the Regional Plan Association to Amtrak, wants to build an alternative. Let me propose something simpler and cheaper, if uglier: eliminate all above-ground structures, and reduce Penn Station to a hole in the ground.

Most of the preexisting plans for Penn Station do not do anything about the track level. It’s assumed that the tracks will remain narrow, that trains will not run reliably enough for consistent track assignments, and that dwell times will remain high. The architects’ proposals involve a nice station headhouse to make passengers feel important. Amtrak wants to decamp to a nice headhouse at Moynihan Station, again to make its passengers feel important, and add a few extra tracks without fixing the existing ones. The RPA proposal is heavy on redevelopment but says nothing about moving trains in and out more efficiently. Only Penn Design’s proposal says anything about consolidating platforms, in addition to constructing a headhouse, but the need to maintain a pretty headhouse places constraints on the ability to move tracks and platforms.

Eliminating the headhouse moves the focus from making passengers feel important to getting passengers in and out as fast as possible. Most importantly, it means there’s no need for girders and columns all over the track level; they support the buildings above the station, including the headhouse, and would not be needed if the station were a simple open cut. Those girders make it hard to move the tracks and platforms – the only reasonable option if they are kept is to pave over pairs of tracks between platforms to create very wide platforms, which would not be well-aligned with the approach tracks.

In the hole in the ground scenario, the two blocks from 7th to 8th Avenue, from 31st to 33rd Streets, would have no above-ground infrastructure. This requires demolishing Two Penn Plaza and Madison Square Garden. Two Penn Plaza is a building of 140,000 m^2, in a city where the private sector builds office towers of such size for about $750 million (at least when they’re not above active railyards); the city has been making noises about moving Madison Square Garden, although in 2013 it extended its lease by ten years. The tracks and platforms would thus be in the open air, and even from the depth of the platforms, passengers could see the surrounding buildings, just as they can in the open cut west of 9th Avenue, just before trains head into the North River Tunnels.

The two-block compound would be trisected by a pair of wide walkways, as wide as a Manhattan street, parallel to 7th and 8th Avenues. Each of the two walkways would have an access point in each direction toward each platform; with the current narrow platforms this means single-direction escalators, but as tracks would be moved and platforms widened, this would be a pair of wide single-direction escalators flanking a wide staircase. There would be an additional access point heading west out of 7th Avenue and one heading east out of 8th, for a total of six per platform. This is an improvement over the current situation, in which the number of access points ranges from four to six, excluding the LIRR’s West End Concourse, which is west of 8th and thus excluded from this discussion; see diagram here. Penn Station’s tracks are about 14 meters below street level; with 30-degree escalator angles, this means that the escalators would be 24 meters long plus short approaches, say 28 meters total, and this provides adequate separation between access points on the platforms as well as on the two walkways, although unfortunately the spacing on the platform would not be even. For disabled access, elevators would be provided at 7th and 8th Avenues and on both walkways.

The main functions of a train station would be devolved to the surrounding streets and the two walkways. Large clocks, mounted on the high-rise towers next to the station, would show the time. Screens posted over the entire compound would show train departure and arrival times and track assignments. The walkways, and the sides of 7th and 8th Avenues facing the compound, would have ticket-vending machines, selling tickets for all railroads using the station; if the platforms were widened, then there would be room for TVMs and some retail on the platforms themselves. There might even be room for some kiosks on the walkways and food trucks on the streets and avenues. Large ticket offices are not required, and small ones can fit either on the walkways or in a building storefront on the perimeter of the compound.

The technological advances of the last half-century or so have largely made station headhouses obsolete. Train stations used to have telegraph operators; they no longer do. They used to have mail sorting space; mail is now carried by air and road, or electronically. TVMs allow passengers to obtain tickets without buying them at ticket offices, and nowadays e-tickets are making TVMs somewhat obsolete as well. Checked baggage is largely a thing of the past. Transportation companies that aim at low costs, including low-cost airlines and intercity express buses, barely have stations at all: intercity buses pick up at curbs, while low-cost airlines often prefer budget terminals with reduced infrastructure. As far as possible, this is the way forward for train stations as well. Recall that my proposal for a Fulton Street regional rail station followed the same logic, using the street as its mezzanine. This is the way forward for Penn Station, too.

On Penn Station South

There’s an article in the New York Times by its architecture critic Michael Kimmelman, making a forceful case for the Gateway Project’s necessity. Like nearly all transit activists in New York, I think new Hudson tunnels are the top infrastructure priority for regional rail; like nearly all transit activists, I groan at Amtrak’s proposed budget, now up to $16 billion (but unlike most, I think that it should not be built unless costs can be brought down – I’d peg their worth at $5 billion normally, or somewhat more in a crunch). I would like to explain one specific piece of scope in Amtrak’s plan that can be eliminated, and that in fact provides very little transportation value: Penn Station South.

Like all proposals for new Hudson tunnels, Gateway is not just a simple two-track tunnel between New Jersey and Penn Station. No: the feuding users of Penn Station all think it needs more tracks. The rejected ARC proposal had a six-track multilevel cavern, and Gateway has Penn Station South, a proposal to demolish an entire block south of Penn Station and build seven additional platform tracks. The cost of just the real estate acquisition for Penn South: $769 million to $1.3 billion, at today’s prices. Trains using the preexisting tunnels would have to go to the preexisting Penn Station tracks, which I will call Penn Classic; trains using the new tunnels could go to either Penn Classic or Penn South, but the junction is planned to be flat. For illustration, see PDF-p. 12 of a press release of the late Senator Lautenberg, and a clearer unofficial picture on Railroad.net.

As a result of this proposed track arrangement, train services would initially suffer from the capacity limitations of flat junctions. Like Penn Station’s tracks 1-4, Penn South would be terminal tracks. This means that the only service possibilities are as follows:

1. Schedule all through-trains, such as Amtrak trains, through the preexisting tunnels.

2. Do not schedule any westbound trains from Penn South or any eastbound trains entering the preexisting Penn Station tracks: for example, no westbound trains from Penn South in the morning peak, and no eastbound trains entering Penn Classic in the afternoon peak.

3. Schedule around at-grade conflicts between opposing traffic.

Option #2 is impossible: Penn South has 7 tracks. If trains can enter but not leave in the morning, there will be room for 7 trains entering in the morning, a far cry from the several dozens expected. Option #1 is the better remaining option, but is ruled out, since Amtrak wants to use the new tunnels for its own trains. This leaves option #3, which restricts capacity, and complicates operations. Thanks to Amtrak’s imperialism, taking over regional rail projects for its own ends, Penn South has negative transportation value relative to just building new tunnels to Penn Classic’s tracks 1-4 (the transportation value relative to doing nothing is of course positive).

I emphasize that the negative transportation value of Penn South comes entirely from Amtrak’s involvement. The same infrastructure, used by passenger rail agencies that were more interested in providing high-quality public transportation than in turf wars, would have positive transportation value. However, as I explained to Kimmelman, this positive transportation value is low, and does not justify even the cost of real estate acquisition, let alone that of digging the station.

Briefly, as can be seen in the diagrams, the interlocking between the two new tunnel tracks and Penn’s eleven terminal tracks – tracks 1-4 of Penn Classic, and all of Penn South – is exceedingly complicated, which would limit approach speed, and not provide much flexibility relative to the number of tracks provided. This is to a large extent unavoidable when two approach tracks become eleven station tracks, but it does lead to diminishing returns from extra tracks. This is one of the reasons it’s easier if trains branch: it’s easier to turn 12 trains per hour on two tracks than to turn 24 on four (although both are done in Tokyo – indeed, the Chuo Line still turns 27 tph on two tracks).

Avoiding large crunches like this at urban terminals a benefit of through-running. This is hard to realize initially unless the new tunnel is what I call ARC-North. It’s still possible to through-run trains, pairing the new tunnels with the southern pair of East River Tunnels and the old tunnels with the northern pair, but it requires a lot of diverging moves at interlockings, limiting speed. Penn Station plans should be built with a long-term goal of simple moves at interlockings, to (slightly) increase speed and capacity and reduce maintenance needs.

However, it’s still possible to square the circle by requiring trains to turn fast on tracks 1-5 of Penn Station (track 5 splits to a terminating end and an end that runs through east of New York). Tokyo would be able to turn a full complement of 24 trains per hour on these tracks. Most other cities would not. However, as somewhat of a limiting European case, the RER A turns a peak train every 10 minutes on single track at Le Vésinet-Le Pecq, the next-to-last station on the Saint-Germain-en-Laye branch; Le Pecq has two through-tracks (also hosting a train every 10 minutes) and one terminal track. See map and schedule. This does not scale to 24 tph on four tracks; somewhat tellingly, those trains do not continue to the terminus, which is a three-track station, implying turning 12 tph on three tracks is problematic. The RER E turns 16 tph at the peak at Haussmann-Saint Lazare, a four-track city terminus, pending under-construction extension of the line to the west, which would make it a through-station.

If we accept 16 tph as the capacity of new Hudson tunnels without new Penn Station tracks, then the question should be what the most cost-effective way to raise future capacity is. An extra 9 tph, the equivalent of the difference between 16 tph and the 25 tph that the current tunnel runs and that Amtrak projects for Gateway, is within the capabilities of signaling improvements and better schedule discipline. Again looking to Paris for limiting cases, the combined RER B+D tunnel between Gare du Nord and Châtelet-Les Halles runs 32 tph, without any stations in the tunnel (the RER B and D use separate platforms), while the moving block signaling-equipped RER A runs 30 tph on its central segment, with stations (as do the S-Bahn systems of Berlin and Munich). The RER E was planned around a capacity of 18 tph, but only 16 tph are run today. 18+32 = 50 = 25+25. France is not Japan, with its famous punctuality: French trains are routinely late, and as far as I remember, the RER B has on-time performance of about 90% based on a 5-minute standard, worse than that of Metro-North in its better months.

More importantly, dropping Penn South from the Gateway plan saves so much money that it could all go to through-running, via a new tunnel from tracks 1-5 to Grand Central. This is about 2 km of tunnel, without any stations; in a normal city this would cost $500 million, the difficulty of building in Midtown canceling out with the lack of stations, and even at New York construction costs, keeping the tab to $2 billion should be doable. The 7 extension is $2.1 billion, but includes a station; an additional proposed infill station at 10th Avenue, dropped from the plan, would’ve $450 million, giving us $1.6 billion for about 1.6 revenue route-km, rising to 2.3 km including tail tracks – less than a billion dollars per kilometer.

At $2 billion, the premium over $1 billion of impossible-to-cut real estate acquisition costs is down to $1 billion. It’s unlikely the construction cost of Penn South could be just $1 billion, without general reductions in city construction costs, which would enable the Penn-Grand Central link to be cheaper as well. Each Second Avenue Subway station is about a billion dollars, and those stations, while somewhat deeper than Penn Station, are both much shorter and narrower than a full city block. The result is that building a Penn-Grand Central link is bound to be cheaper than building Penn South, while also providing equivalent capacity and service to a wider variety of destinations via through-running.

One difficulty is staging the tunnel-boring machines for such a connection: building a launch box involves large fixed costs, especially in such a crowded place as Midtown. One of the reasons Second Avenue Subway and the 7 extension are the world’s most expensive subway project per kilometer is that they’re so short, so those fixed costs are spread across less route length. The best way to mitigate this problem is to build the link simultaneously with the new Hudson tunnels. The staging would be done on Penn’s tracks 1-4, whose platforms would be temporarily stripped; the construction disruption involved in the tunnels is likely to require shutting those tracks down anyway. Depending on the geology, it may even be possible to use the same tunnel-boring machine from New Jersey all the way to Grand Central.

This doesn’t save as much money – the Penn-Grand Central link is extra scope, with its own costs and risks. However, unlike Penn South, it is useful to train riders. Penn South allows terminating trains at Penn Station more comfortably, without having to hit the limit of large-city terminal capacity; the Penn-Grand Central link creates this capacity, but also lets riders from New Jersey go to Grand Central and points north (such as Harlem, but also such more distant commercial centers as Stamford), and riders from Metro-North territory go to Penn Station and points west (such as Downtown Newark).

Normally, I advocate unbundling infrastructure projects, because of the tendency to lump too many things together into a single signature plan, which then turns into political football, a sure recipe for cost overruns. However, when projects logically lead to one another, then bundling is the correct choice. For example, building an entire subway line, with a single tunnel-boring machine and a single launchbox, usually costs less than building it in small stages, as is the case with Second Avenue Subway. New Hudson tunnels naturally lead into a new tunnel east of Penn Station, regardless of where this tunnel goes; and once a tunnel is built, its natural terminus is Grand Central.

Bergenline Avenue and New Hudson Tunnels

The main street of Hudson County from Jersey City north is Bergenline Avenue. It passes through the densest cities in the US (denser than New York, which is weighed down by outer-urban areas), and hosts frequent jitney service. Last decade, New Jersey began to document jitney service in North Jersey, producing a report in 2011 that identified major corridors; Bergenline is the busiest, with a jitney almost every minute, and almost as frequent additional jitney and New Jersey Transit service on the northern part of the route running into Manhattan via the Lincoln Tunnel. This was discussed extensively on Cap’n Transit’s blog three years ago, and I thought (and still think) Bergenline should eventually get a subway line. I bring this up because of a critical tie-in to Bergenline’s transit service: new mainline Hudson tunnels. If the new tunnels are built to host regional rather than intercity trains, then they should also make a stop at Bergenline to allow for easier transfers from the buses to Manhattan.

Unfortunately, there are no estimates of ridership on the Bergenline buses. The 2011 report did rough counts of passengers per hour passing through a single point, but that is not directly comparable to the usual metrics of ridership per day or per year. Moreover, the report assumed there are 16 passengers per jitney, where, at least in Cap’n Transit’s experience, the jitneys on Bergenline are considerably larger, in the 20-30 passenger range. Either way, they’re smaller than full-size buses, which means we can’t just compare the frequency on Bergenline with that on busy New York bus corridors. However, a bus in that size range almost every minute, both peak and off-peak, is bound to have comparable ridership to the busiest buses in New York: the single busiest, the M15, runs articulated buses every 3 minutes at the peak and every 4 off-peak.

There are several corridors heading into Manhattan. According to the summary on the report’s PDF-page 51, Bergenline has jitneys heading into Port Authority every 2-4 minutes at the peak, and New Jersey Transit buses (routes 156 and 159) every 5 minutes. Paralleling Bergenline, JFK Boulevard East has a jitney every 4-5 minutes (with larger vehicles than on Bergenline), and a New Jersey Transit bus almost every minute at the peak (route 128). There is also very frequent New Jersey Transit bus service, more than once per minute between routes 156, 159, and 166, running nonstop to Port Authority at the peak; unlike the jitneys, New Jersey Transit bus service is extremely peaky, with the combined routes 156 and 159 dropping to a bus every 15 minutes, and the Boulevard East routes (165, 166, 168) dropping to a bus every 9 minutes.

From the New Jersey Transit schedules, peak-hour buses spend 18-19 minutes getting into Port Authority from Bergenline, and 14 minutes getting into Port Authority from Boulevard East. In contrast, a train station located under Bergenline would have service to Penn Station taking about 3 minutes. Trains go through the existing older tunnel at about 100 km/h, and the new tunnel could support at least the same speed, while a through-running service plan would simplify the Penn Station interlockings enough that trains could enter and leave the station at speed. Even allowing for transfer time and for additional wait times, which are very short at the peak anyway, this represents an improvement of more than 10 minutes.

It goes without saying that the service should be frequent and affordable. The fare should be the same as on the subway, with free transfers. There’s some precedent in that PATH charges similar fares to the subway, but free transfers, a basic amenity in regions with integrated transportation planning, would be new to New York. At the peak, all trains would stop at Bergenline, since there’s not enough capacity to mix stopping and nonstop trains on the same tracks given expected traffic. But even off-peak, all trains should continue stopping at Bergenline – as well as at Secaucus – in order to maintain adequate frequency. Given how dense and close to Manhattan the area is, 10 minutes is the maximum acceptable headway, which corresponds to the combined off-peak frequency of all New Jersey Transit trains into Penn Station today.

While the busiest trunk line does not even enter Manhattan, the presence of fast, frequent regional rail with competitive fares is likely to change travel patterns. This is not the same as transit-oriented development: I am not assuming a single new building on top of the Palisades. Instead, some people who live and work in northern Hudson County would shift over time to working in New York, thanks to improved transportation links. In parallel, people working in New York would move to cheaper housing in Hudson County. In the other direction, companies that want to attract reverse commuters might locate to the area around the new station. The overall effect would integrate northern Hudson County into the core better, turning it into more of a bedroom community, like Brooklyn and Queens, while simultaneously concentrating its employment around the station. The upshot is that this station would already come equipped with a huge installed base of feeder buses, which run the route already without a connection to Manhattan. A longer-range plan to build a subway under Bergenline, from Fort Lee to Journal Square, would further integrate the entire west bank of the lower Hudson into the city core.

This tilts the best traffic plan for new tunnels away from Amtrak’s Gateway plan and back toward New Jersey Transit’s various flavors of ARC. First, it’s easier to build the station while the tunnel is excavated than to build the station in the preexisting tunnel. At the same time, whichever tunnel has the station should be the one without intercity trains: all peak trains would have to stop at the station for capacity reasons (there’s no room for bypass tracks), and this would slow down intercity trains unacceptably. Put together, this means Amtrak should stay in the old tunnels and all traffic in the new tunnels should be regional.

Second and more importantly, a high-grade new tunnel pair from New Jersey to Penn Station should also continue onward to Grand Central, with trains running through to Metro-North territory. The importance of through-running and good service to multiple urban nodes is greatest for local service and smallest for long-distance service. In Paris, the RER involves through-service for shorter-range commuter trains; the Transiliens, which terminate at the traditional terminal stations, serve farther-away suburbs. And in Tokyo, the local lines of the JR East network run through whereas the express lines either don’t or have only started doing so recently. The reason is similar to a pattern I mentioned before about airports: at long range, people only travel to the city for functions that their region lacks, and those are usually centered on the CBD, whereas at short range, people travel in all directions. The upshot of this discussion is that a Bergenline stop is likely to add many local travelers to the system, and they should get the service that’s more useful for their needs.

Of course, a good service plan will involve through-running in both the old and new tunnels. However, through-running is more valuable in the new tunnel, going to Grand Central, than in the old tunnel, going to Long Island and the Northeast Corridor. As a judgment call, I believe that through-running to Grand Central, Harlem, and the South Bronx connects to more neighborhoods than through-running to Sunnyside, Flushing, and Jamaica. It also has better subway connections, to the 4/5/6 if to nothing else, and local riders are accustomed to two-seat rides and subway connections. Finally, under a fuller regional rail plan, including service to Lower Manhattan, Grand Central has connections to Lower Manhattan and Downtown Brooklyn whereas Penn Station and Sunnyside don’t.

In contrast, Amtrak’s plan gets it exactly backward in proposing to use the Gateway tunnel for its own trains and some additional regional trains. The only advantage of this plan is that it would be possible for regional trains to maintain higher speed through the wider-diameter new tunnel (intercity trains could raise speeds more easily, since high-speed trains are pressurized to limit ear popping when they enter tunnels). But by hogging slots in the Penn Station-Grand Central tunnel, Amtrak would force many local and regional rail riders onto trains that do not serve their destination directly and do not have an easy transfer to it.

The only drawback of this plan is cost. The station would be located deep beneath the Palisades, complicating its construction. While the access shafts are not difficult – vertical bores for elevators are simply to build – the station itself would require blasting a cavern, or using a large-diameter bore. The cavern option is not cheap. I am not going to try coming up with a cost estimate, but I will note that the station caverns of Second Avenue Subway Phase 1, which are built cut-and-cover rather than blasted from inside, are around a billion dollars each. A large-diameter bore is more attractive, but is more expensive than twin small-diameter bores if there are no stations, and may well have difficulties emerging at the Manhattan end.

Without reliable estimates for either the incremental cost or the incremental ridership, I can’t say whether this is a cost-effective proposal. I suspect that it is, given the high ridership of the Bergenline buses and the high density of the region. Part of what makes an S-Bahn or RER system successful is its service to urban neighborhoods and not just suburbs and CBDs, and Bergenline could be a good addition to the system that the region should be building.

Is Low-Cost Intercity Rail Possible?

Update: see corrected Shinkansen staffing numbers below

The last few decades have seen the growth of airlines and bus operators that reduce operating costs using a variety of lean-production ideas, chiefly using the equipment for more hours per day to earn more revenue with the same fixed costs. This hasn’t generally happened for rail, even in the presence of competition between operators. There is one low-cost option, on the TGV network, which like Ryanair and easyJey cuts costs not only by leaner production but also by reducing passenger comfort and convenience. I contend that an intermediate solution should be investigated: lean like Southwest and JetBlue, but without the extra fees, which are lower on those two airlines than on legacy US airlines.

First, the preexisting fares. In Japan, JR Central charges an average of $0.228 per passenger-km on the Shinkansen, JR East charges $0.245, JR West charges $0.208. In Japan nearly all intercity service is Shinkansen; averaging all JR East rail other than Tokyo-area commuter rail, even commuter rail around Sendai and Niigata, drops the average marginally, to $0.217. European intercity rail fares per passenger-km are lower: €0.104 on RENFE (PDF-p. 27), €0.108 on DB, and €0.112 on SNCF. All of those companies are profitable and do not receive subsidies for intercity rail, with the exception of RENFE, which loses small amounts of money (-0.8% profit margin). This is far lower than Northeast Corridor fare, which, as of the most recent monthly report, averages $0.534 per passenger-km on the Acela and $0.292 on the Regional.

Now, we can try penciling what operating costs should be. The most marginal costs, which grow linearly with the addition of new service, look a lot like those of low-cost private bus operators: crew, cleaners, energy, rolling stock acquisition, rolling stock maintenance. I am specifically handwaving the peak factor – frequency is assumed to be constant, to establish the operating cost of the base rather than that of the peak. I am going to assume 1,120 seats per train, all coach, about the same as a 16-car Shinkansen with 2+2 standard-class seating, or 70 per car. First class should be thought of as an equivalent of buying extra seats – fares should scale with the amount of space per passenger, and at any rate most cars are coach. Occupancy rate will be taken to be 57%, for a round 40 passengers per car; this is well within the range of HSR occupancy.

The cost turns out to be quite low – this is similar to the analysis in Reason & Rail from 2 years ago, except for now I’m leaving out infrastructure costs, which in that analysis are the dominant term, and so excluding them leads to very low costs. It is about three cents per passenger-km in operating and maintenance costs. This is of course not what HSR currently costs, but should be thought of as a lower limit or as the marginal cost of increasing base service.

A crew on a high-speed train is a train driver and a conductor. A 16-car Shinkansen train appears to have one conductor judging by the single conductor’s compartment has three conductors (see Andrew in Ezo’s comment below); the TGV has much more staffing, with the low-cost TGV having four. US salaries are high because the railroads have good unions: according to the Manhattan Institute’s applet for public employees’ salaries, on the LIRR, the average train driver makes $103,000 a year (search for “engineer”) and on Metro-North $115,000 (search for “locomotive engineer”). This is higher than on the Shinkansen. A conductor makes $98,000 on the LIRR and $105,000 on Metro-North. Figure $240,000 per year for a two-person crew $440,000 per year for a four-person crew.

We need to convert this to operating hours. On the LIRR and Metro-North, there are about 4,500 revenue car-hours per driver-year, which translates to about 600 revenue train-hours. At an average speed of 200 km/h, HSR would cost $2 $3.67 per train-km, or $0.003125 $0.0057 per passenger-km. But Metro-North and the LIRR are inefficient due to a prominent peak making smooth scheduling difficult; HSR can schedule a simple shift with a roundtrip of about 6-7 hours plus rest time, and if each employee does this 5 days a week minus holidays this is 1,200 revenue hours. This halves the cost. Conversely, going to 4 conductors, with a five-person crew paid a total of $540,000 per year, raises the cost to $0.007 per passenger-km, still low.

Electricity consumption can be calculated from first principles based on acceleration characteristics, or based on real-life HSR consumption levels. For the latter, a UIC paper claims 73 Wh/passenger-km on PDF-p. 17; this appears to be based on an assumption (see PDF-p. 33) of 70% occupancy but a train that is smaller (397 seats for 8 cars) and heavier (425 t vs. 365 t for an 8-car Shinkansen). Correcting for these gives 54 Wh/p-km. When I try to derive this from first principles assuming Northeast Corridor characteristics but with substantial segments upgraded to 360 km/h, I get about 50 Wh/p-km; this doesn’t include losses between catenary and wheel or regenerative braking, which mostly cancel each other out with losses being a little bigger. Rounding up to 56 Wh/p-km and using a transportation-sector electricity cost of $0.125 per kWh, we get $0.007 in electricity cost per passenger-km.

Cleaning should be done as fast as possible, with large crews working to turn trains around in the minimum amount of time based on safety margins and schedule recovery. JR East cleans Shinkansen trains in 12 minutes of Tokyo turnaround time minus 5 minutes for letting passengers disembark; the team size is 1 cleaner per standard-class car and 2-3 per green car, for a total of 22. This does not mean we can pencil in just 7 minutes of cleaning, since this doesn’t take into account the cleaning crew’s time waiting for a train to arrive, or downtime in case trains don’t arrive exactly one turnaround time apart. For a 4 tph operation, 15 minutes are fine, but for a 6 tph one, 10 may not be enough, requiring going up to 20. This is once per train run, so once per 720 km. With a team size of 24, that’s 24 person-hours per 720 train-km, or 32 in the 6 tph version.

Again using Manhattan Institute data, cleaners make $50,000 a year; it’s possible wages will have to go up to attract people who can consistently clean a car on the tight schedules posited, but there’s no base of comparison of companies having both Japanese standards for scheduling and American union scales. Say $30 per hour on the job (including downtime and waiting for a train, but not scheduled breaks). In the 6 tph version, this costs $0.002 per passenger-km.

RENFE’s above-linked executive summary includes a breakdown of employees by category (regular, support, and managerial) and gender on PDF-p. 46, whence we can obtain that for each operations employee there are 0.2 managers and 0.07 support employees. For capital projects, the California HSR estimates add 20% for overhead, management, and design, not including contingency, and the Penn Design estimate adds 18% (PDF-p. 247). This should be taken as the marginal cost of extra managers to oversee extra employees hired to provide additional service. In total, this is roughly $0.019 per passenger-km assuming higher crew staffing, and $0.013 $0.0175 assuming lower staffing.

Rolling stock is more expensive, and should spend as much time earning revenue as feasible based on established maintenance protocols. A large share of the operating costs of high-speed rail comes from the rolling stock: 20% on Madrid-Barcelona according to a RENFE presentation to California HSR whose official source is now a dead link, and, from eyeballing, perhaps 25% according to PDF-p. 8 of a UIC presentation about track access charges. The low-cost TGV doubles train utilization to about a million kilometers a year. This should be routine on Northeast Corridor operations: two round-trips per train, about 14-15 hours per day including turnaround time, 1 million train-km a year. Procurement of new N700s costs about $3 million per car, and Japanese depreciation schedules are over 20 years. Other trains capable of more than 250 km/h cost $4 million per car in China; with mid-life refurbishment of non-trivial cost, they can last up to 40. With 4% interest cost, depreciation and interest are about $280,000 per car-year either way, and if a car travels a million km with 40 people on average, that’s another $0.007 per passenger-km, a substantial sum so far.

Rolling stock maintenance is also relatively expensive. California HSR’s 2012 business plan has a list of costs around the world on PDF-p. 136. JR Central’s rolling stock maintenance is $7.20 per trainset-mile, which with our assumptions translates to $0.007 per passenger-km. European rolling stock maintenance costs are $4.16 per trainset-mile, which appears to be for an 8-car train, so scaling up by a factor of two gives $0.008 per passenger-km. Note that the maintenance of the rolling stock costs as much as the depreciation and interest on its acquisition.

In reality, maintenance depends on both time and distance, so increasing rolling stock utilization leads to lower costs per train-km. Since with those assumptions, the rolling stock costs about as much as the actual operations, this is a major cost cutter, though not a game changer given other costs. Note that the RENFE presentation slide also includes a large array of fixed costs and infrastructure (maintenance, which is very cheap at about $100,000 per route-km per year, and depreciation and interest on construction, which aren’t so cheap) as well as managerial overheads, hence the 20%; the UIC presentation includes some overheads as well. However, those fixed costs are more affordable if they’re spread across more service. A line built to have a 6 tph capacity has the same infrastructure cost at any frequency up to 6 tph.

So far, adding up all the operating and rolling stock costs totals to about $0.03 $0.033 per passenger-km. This means $11 $12 direct operating costs between New York and Washington or New York and Boston. It’s also a quarter what the Europeans charge for HSR tickets, and an eighth of what the Japanese charge. Despite this, the California HSR numbers are similar, so this analysis passes a sanity check. Again referring to the business plan’s PDF-p. 136, the table claims operating costs per trainset-mile that, after scaling from 8- to 16-car trains, are $0.04 per passenger-km. They exclude rolling stock acquisition, but include maintenance; but the assumptions in the Operations and Maintenance Peer Review are worse than in this post, with worse train utilization (turnaround times are assumed to be 40 minutes on PDF-p. 21) and more staff on board each train (an engineer, a conductor, an assistant conductor, a ticket collector, and a special services employee per 8-car unit, for a total of ten employees for 16 cars).

Still, I have no expectation that anyone can charge $11 $12 profitably for HSR service between New York and Washington. However, I strongly believe costs could be brought substantially below current rates. I believe the reason SNCF has only begun to do that and other operators not at all comes from two places.

First, infrastructure charges, a third of the cost of both the TGV and the Madrid-Barcelona AVE, are not just about paying off infrastructure costs (both Spain and France are low-construction cost countries for HSR). They transfer profits from the HSR operator to the monopoly infrastructure owner: track access charges were specifically increased in France ahead of the opening of the European rail market to competition, ensuring HSR surplus would go to state-owned infrastructure owner RFF rather than to foreign companies or the customers.

And second, unlike in the US, in Europe low-cost airlines are associated with terrible service: low seat pitch, hidden fees, rigid policies toward carry-on baggage, rigid policies toward missed flights, worse customer satisfaction, secondary airports located far from the cities they purportedly serve. The US has some of this in Spirit Airlines and Allegiant Airways, but it also has Southwest, JetBlue, and Virgin Atlantic, which have high customer satisfaction, flexible tickets, secondary airports located close to city centers (such as Dallas Love Field), and seat pitch equal to or better than that of the legacy airlines, which have degraded service. Europeans hate low-cost flying; Americans hate flying. The result is that Ryanair tars any attempt to lower costs in Europe by associating lean production and high equipment utilization with no-frills third-class service. This might make managers more wary of adopting some of the more positive aspects of low-cost carriers. Japan has no major low-cost carriers, so although it does not have the stigma, it doesn’t have the domestic experience, either.

I do not believe it’s possible for a train to charge $11 $12 one-way between New York and Washington and stay in business. There needs to be some profit margin, plus paying back infrastructure construction costs. However, I do believe it’s possible to charge closer to that than to present European HSR fares for the same distance (about $45), let alone present Amtrak fares. California HSR is actually pointing the way, but has such high construction costs that paying off even part of construction represents a major rise in ticket fares. The Northeast can and should do better.

The Magic Triangle: Infrastructure-Timetable-Rolling Stock

In the last month, Amtrak decided not to purchase additional Acela cars, but instead replace the Acela fleet ahead of time, and try to buy trains that aren’t compliant with FRA regulations. More recently, Amtrak and the California HSR Authority decided to bundle their orders together. The latter decision drew plenty of criticism from some good transit advocates, such as Clem Tillier, and even the former decision did. Clem explained,

The whole notion of buying quicker trains for the NEC is ridiculous– the existing Acela Express trains have plenty of oomph (16 kW/tonne) to do anything they need to do. “Lighter” and “faster” isn’t the key to anything on the NEC, and dropping in a higher-performance train will not lead to material trip time improvements. They need to speed up the slow bits first, which isn’t something you do by blowing money on trains.

Clem’s criticism got a fair amount of flak in comments, from me and others, for underestimating how important getting around FRA regulations is. What nobody said in comments, and I only realized after the discussion died out, is how the choice of rolling stock depends heavily on what Amtrak plans to do with infrastructure and service planning in the Northeast. It doesn’t make sense in any case to tether Amtrak’s plans for a corridor that’s in many ways globally unique to the California HSR Authority’s for a fairly standard HSR implementation. But what rolling stock is required, and thus how bad the tethering is, depends on a concrete plan for infrastructure and schedule.

At the highest level, the unique issue with the Northeast Corridor is that significant parts can’t be feasibly upgraded to more than 200-250 km/h or easily bypassed, while others can. This means that there’s a tradeoff between top speed and cant deficiency, and the optimal choice depends on how much investment there is into speeding up segments. In any case it’s critical to improve station throats, interlockings, and railroad junctions, but after the 50 and 100 km/h zones are dealt with, the remaining questions are still nontrivial.

The more money is invested, the less it makes sense to run a 270 mm-cant deficiency, 250 km/h Pendolino, and the more it makes sense to run a Talgo AVRIL or E5/E6, both of which are capable of 350 km/h but only about 180 mm of cant deficiency (or N700-I, which is on paper capable of 330 km/h and about 135 mm and in practice could probably be run at 360 km/h and 175 mm). If there’s one segment that tilts the decision, it’s New Haven-Providence: using the legacy Shore Line, even with heavy upgrades, limits speeds and favors high cant deficiency, while bypassing it on I-95 favors high top speeds. But even the New York-Washington segment of today has a few curves strategically located at the worst locations, which make higher tilt degree a benefit.

In medium-speed territory, the Pendolino versus E5/AVRIL/N700-I decision is the muddiest. I ran rough simulations on an upgraded New Haven Line, with bypasses including those I advocated as a first step but also additional ones in the more difficult Stamford-New Haven segment. A train with E5 cant deficiency and N700-I acceleration did New York-New Haven in 32 minutes, and a Pendolino with all cars powered did it in 30. Neither is a standard trainset, though the former is very close to standard (and the Talgo AVRIL is also quite close). The Pendolino as it is, with about half the cars powered, has low power by HSR standards, and this is a problem for accelerating back from a slow zone at medium speed. With all cars powered (which is feasible, at higher acquisition cost) it’s still far from turbocharged, but can change speed more easily. An off-the-shelf Pendolino would not beat an E5 or AVRIL or N700-I on such a corridor, and of course would not beat it south of New York or north of New Haven.

Since nonstandard trains cost more, it’s important to also decide whether they’re worth the cost. Bearing in mind that Amtrak said a new noncompliant trainset costs $35-55 million, which is above the range for 8-car trains (China pays about $4 million per 350+ km/h car), so it may already be factoring in a premium, paying more for trains is worth it whenever the benefits to passengers are noticeable enough. This, like choosing very high-speed rolling stock rather than a Pendolino, is the most effective at high levels of infrastructure investment. An off-the-shelf Pendolino is good enough for most applications. So is an off-the-shelf N700-I without tilt. It’s okay to be 15 minutes slower than the cutting edge if the cutting edge is too expensive. But the effect of 15 minutes on ridership is more pronounced if it’s the difference between 1:35 and 1:50 than if it’s the difference between 3:00 and 3:15. In addition, the faster the service is, the more revenue each train earns, and this allows spreading the extra acquisition cost among more passengers.

Another factor that’s neglected, at least in public statements, is the service plan. Amtrak service is heavily padded: the fastest northbound Acela is scheduled to do Providence-Boston in 47 minutes, but in the opposite direction it’s 34. Remove the Route 128 stop and this can get close to 30 or even below it. About the fastest trains can go with no schedule padding is 19.25 minutes, and reasonable but not onerous padding raises it to about 20.5. Clearly, more of the difference comes from operating efficiencies than from any speed raising; the Acela already goes 240 km/h between Providence and Boston and already has about 180 mm (7″) cant deficiency.

The limiting factor here is more MBTA ownership and operating culture. A good service plan would make it clear how trains can share the corridor (and the same is true on the New Haven Line, another unduly slowed commuter-owned segment), and because MBTA trains are so slow, any cooperation would involve public statements regarding upgrades to the MBTA. The Acela has level boarding at every stop except New London, which is the easiest to cut out and should be bypassed together with the rest of Shore Line East. It’s the MBTA that has non-level boarding, which remains one of the biggest schedule risks, requiring plenty of recovery time to deal with possible long dwell times coming from above-average crowds.

The problem is that Amtrak has made no statements regarding how to integrate the three legs of the magic triangle. It proposed the Vision plan, which even political transit bloggers like Ben Kabak note the extreme cost of; there’s no funding, and the first segment for which it’s trying to obtain funding, the Gateway Tunnel, is very far from the top priority for speed or even for intercity rail capacity. It now proposes new rolling stock, but is unclear about what the trains are supposed to do except be very fast. (Bundling with a new-build line like California makes sense only if all curves are straightened to a radius of 4+ kilometers, even extremely expensive ones.)

Perhaps it’s a feature of opaque government, that Amtrak refuses to say how much money it needs to meet each timetable and capacity goal. For example, it could say that if Congress gives it $10 billion it could reduce travel time from Washington to Boston from the present 6:45 to 5:45 while also running a peak of 4 long trains per hour at that speed. (I think for $10 billion it’s possible to get down to 3:30 or at worst 4:00, but this is a matter of cost control and not just transparency, though transparency can indirectly lead to better cost control.) This would involve heavy cooperation with the commuter railroads that share its tracks and joint plans, as well as detailed public plans for how much to spend on each segment and for what purpose. This is routine in Swiss rail infrastructure planning, since all major projects have to be approved by referendum, but does not happen in the US. It could be that Amtrak knows what it’s doing but acts like it doesn’t because the structure of government in the US is such that these decisions are made behind closed doors.

But more likely, Amtrak doesn’t know what it’s doing, and is just proposing new initiatives that make it seem forward-looking. Changing FRA rules is an unmixed blessing. Bundling an order with California HSR is not. The fact that Amtrak is doing so, while keeping mum about even what kind of rolling stock it thinks it needs, suggests that it reverses the usual way reform should be: instead of a need for reform producing good results and thence good headlines, a need to get good headlines about reform produces reform ideas that sound good. Some of those good-sounding ideas really are good, but not all are. It’s important for good transit advocates to distinguish the two both privately and publicly.

I feel like in the last two years, we’ve seen important American transit and railroad managers say correct things. Shortly after I started making noise in comments about New York’s outsized subway construction costs, Jay Walder said as much in a report entitled Making Every Dollar Count. Joe Lhota proposed through-running on commuter rail as a solution to improve efficiency. Scott Stringer, too, talked publicly about comparative construction costs, and for all of my criticisms of transit managers who say that, I thought it was enough for him to say that as a political candidate for a medium-term office to deserve my endorsement for the mayoral election, which he unfortunately bowed out of. The FRA proposed to start working on new rules for rolling stock last year. At Amtrak, we’ve just now seen Joseph Boardman propose noncompliant rolling stock. Perhaps I’d be more optimistic if Walder and Lhota had stayed at the MTA for longer to implement their positive reform ideas, instead of using it as a springboard to secure a higher-paying job or run for mayor, but increasingly it looks like the good reform talk is not generally accompanied by good actions.

This is, again, where good transit advocates can have the most influence. We more or less know which reforms are required and which are not. There are disagreements at times (Clem, for one, has much better credentials as a good transit activist than I do), but on most of the agenda items there’s agreement. We already know what details we might want to see from a good plan of action, and the advantage of this is that we can check proposed plans against them. That Amtrak’s gotten so many details wrong suggests that it still doesn’t know what the best practices for rail construction are, even if the basic idea of getting around FRA rules is sound. I wish I didn’t have to say it, but I’ll believe Amtrak’s improved when I see it.

Washington Union Station

Amtrak’s announcement that it needs $7 billion to improve Union Station, in a way that is tangential to train or passenger capacity, has gotten some deserved flak already on other blogs. What I want to discuss instead is a pair of issues relating to capacity: passenger circulation, and track capacity. Especially on the latter, Union Station does have some problems, not at current traffic, but enough that future traffic increases may require difficult at-grade merges. The core of the problem is that the terminal tracks are located to the west of the through-tracks, with an at-grade junction, rather than between them.

Fortunately, the passenger circulation capacity issue is easier. Although Amtrak claims 100,000 passengers use the station every day, in reality the number is beefed up with Metro riders, similarly to Penn Station’s 600,000 daily passengers statistic, of which nearly half is subway ridership. Total ridership on MARC and VRE is 53,000 per weekday, and Amtrak has a total of 13,000 boardings and alightings per day there (not per weekday, but intercity traffic does not have the weekday peak of commuter traffic). This is 66,000 boardings and alightings, assuming every MARC and VRE trip begins or ends at Union Station. In contrast, on just two tracks with ordinary subway platforms, Metro has 34,000 boardings at the station; page 13 of Amtrak’s announcement shows the relative scale of Metro and mainline infrastructure. The mainline half of the station’s ridership is passengers who are likelier to be carrying luggage or not be local, but the main difference between it and the Metro half is that the Metro half is using Metro turf and the mainline half is using the station above which Amtrak’s headquarters is located.

If there is a problem, it comes from Amtrak’s practice of corralling riders at waiting points, instead of letting them filter onto the platforms or the stations whenever they like, as is done every day on trains in France and Germany, or on the less busy stations of the Northeast Corridor. Stephen Smith tells me that unlike in New York or Boston, where the waiting areas are at least adjacent to the platform and the problem is one of having just one access point (or just one official access point in New York), in Washington there is another antechamber between the passengers and the train. An extra 100 meters of walking adds about a minute of travel time in a congested space, and perhaps 45 seconds in a clear one; Amtrak’s current practice adds multiple minutes to door-to-door travel time, and also forces pedestrian congestion once it clears passengers to access the platform.

Adding access points is also a good thing, but that does not cost $7 billion, and does not require redoing the entire main concourse. But possibly the most important thing to do in the near term is making all platforms high, also nowhere near a $7 billion project; the diagrams on Amtrak’s announcement suggest all terminal tracks and most through-tracks will be high-platform, but one through-platform will remain low.

Now, track capacity is where things get more interesting, because potentially there is a problem, coming from terminal layout. A not very clear, but public, diagram can be found here: look for Washington Union Terminal, and within it, Interlockings C (the outer station throat and a nearby yard), K (the inner throat and the actual tracks), and A (the connection from the through-tracks to First Street Tunnel). Note that terminating tracks 7-20 are to the west of through-tracks 22-29, and the junction is at grade, which represents a problem for easy cookie-cutter planning.

The operationally simplest but most expensive to deal with this is to build a grade separation. If it’s anything like Harold, expect a $300 million price tag. At present and expected levels of traffic, this is overkill.

I claim that if MARC and VRE trains continue to terminate at Union Station, no special work is needed: Brunswick and Camden Line traffic can be segregated on tracks 7-9 (and the turnaround capacity, easily about 12 tph for 3 tracks, is more than those lines will need between them), VRE traffic can be segregated on tracks 24-25, and Penn Line traffic can use the same tracks as the terminating intercity trains.

The only at-grade conflict would be between northbound trains originating at Washington, and southbound ones continuing through to Virginia, and even high possible traffic levels (say, 12 tph terminating including the Penn Line sprawled across 11 tracks of which 3 already have long platforms and arguably 3 more can be lengthened, 2 tph through across 4 tracks) can be scheduled in a similar manner to all-terminating stations, treating the through-trains as terminating trains that have to use specific tracks and have no limit on dwell time.

Specifically, because Penn Line (or local HSR) trains would leave immediately after express HSR trains to reduce the number of required overtakes, at worst we’d have trains originating at :00 and :02, repeating every 10 minutes, and then there’s an 8-minute window within which to schedule southbound through-trains.

So instead let us assume commuter trains run through, in which case we may as well assume they have good reliability so that they can be scheduled with 2-minute headways. Current peak traffic is 3 tph Brunswick, 2 tph Camden, 3 tph Penn, and lower combined traffic on the Virginia side. Assume that peak traffic will grow to 3 tph Brunswick and Camden and 6 tph combined Penn and through-HSR; in fact the most potential for growth is off-peak, and because multiple platforms are very long, long trains may be used if there are capacity problems.

We now have 6 tph terminating HSR, 6 tph through-traffic on the Penn Line (including HSR), and 6 tph through-commuter traffic on the Camden and Brunswick Lines; Camden and Brunswick are physically to the west of the Northeast Corridor, and so in addition to conflicts between terminating and through trains, we have conflicts between through-Camden/Brunswick and southbound through-Penn/HSR.

In this situation, we can have southbound terminating HSR and through-Penn/HSR trains clearing the throat at :00 and :02 again. Northbound terminating HSR trains have to depart 2 minutes after the arrival of southbound through-Penn/HSR trains, e.g. :04, and then northbound through-Camden/Brunswick trains can depart between :06 and :08; northbound through-Penn/HSR trains are always to the east of everything else and so do not conflict with anything.

Because southbound through-Camden/Brunswick trains conflict with terminating trains, they can be scheduled at the same time as northbound through-trains of some kind, which constrains the symmetry axis we choose but is otherwise workable. For example, if Camden/Brunswick trains both depart and arrive at :07 then with the terminating trains arriving :00 and departing :04, we have a symmetry axis ending in a 2 or a 7 (and through-Penn/HSR trains would arrive and depart at :02). But then the terminating trains also arrive just before the through-Penn/HSR trains and depart just after, implying they are slower or else there would be an overtake just north of the station. We can instead switch the trains – and then terminating trains arrive and depart :02, and through-Penn/HSR arrive southbound :00 and depart northbound :04. Note that there is no conflict between northbound terminating trains and southbound through-trains.

So it is possible to do this without extra infrastructure beside longer and level-boarding platforms, which are cheap. Let us finish by seeing what extra trains can be scheduled into the above 18 tph schedule. Scheduling 6 tph of terminating trains is easy: trains arriving :04 and departing :00, the opposite of the terminating HSR trains discussed above, will be adequately separated. The problem then is just the need to overtake the :02 through-trains along the tracks; however, at such a level of demand, 18 tph combined HSR and commuter on the Northeast Corridor, full four-tracking there would be necessary anyway.

But no extra through-traffic can be realistically scheduled into the same timetable, because the southbound :04 trains would conflict with the northbound :04 terminating trains. Changing the schedule so that it’s the terminating trains that arrive and depart at the same time is, however, possible: since we’re four-tracking the entire Baltimore-Washington line at this stage, we can have terminating trains arrive and depart :02, Camden/Brunswick trains do the same :07, and through-Penn/HSR trains arrive and depart :00 and :04. That said, this means it’s impossible to schedule more than 6 terminating tph into Union Station; I believe it’ll be easier to fill all those extra intercity trains into Washington than fill 18 tph going from Washington toward Virginia, both intercity and commuter.

Of course, the traffic levels discussed here are all very high, especially for HSR. An HSR system that fills even 6 tph is one that can pay for future capacity increases out of operating profits. The importance should be getting a starter system with reasonable capacity for the next few years and then build capacity projects as required, with immediate construction done only on the most critical segments or those that would be hard to reconstruct with more future traffic.

So we’re back to the question of what needs to be done with Union Station, and the answer is hardly anything. It’s not even Moynihan Station, which is also sold as a bigger transportation benefit than it is, but is at least billed as a grand station to be named after a politician more than anything (and is only about $1.5 billion). It’s even worse than Gateway and the Market East station, which would have positive transportation value, and are just very cost-ineffective. It’s not solving any problem for the foreseeable future; it’s just using big numbers about current traffic and growth to scare people into thinking more capacity is needed, and mostly it’s using small increases in track capacity to justify throwing billions of dollars on beautifying Amtrak’s headquarters.

Surreptitious Cost Escalations and Spurious Cost Savings

In response to my previous post regarding the extreme cost of Amtrak’s new Northeast Corridor Vision plan, people both on forums and on blogs have said that it’s actually a cost saving coming from bundling the Vision with the earlier Master Plan. Although the original cost was $117 billion and the current one is $151 billion, the current one is still lower than the sum of the original cost plus the cost of the Master Plan, by $15 billion. This looks like a cost saving, but it’s actually not.

The explanation is that the Master Plan still contains elements that are unnecessary if large portions of the line, including nearly the entire New York-Boston segment, are bypassed. The list of projects on PDF-page 21 of the plan contains additional tracks in eastern Connecticut and a replacement of the bridge over the Connecticut, boosting capacity. However, if the intercity trains are removed from the line, there is no need to boost capacity. Low-performing branch lines – and this is what Shore Line East is without intercity trains – can be and are spun off to regional agencies: JR East abandoned the northern reaches of the Tohoku Main Line as it extended the Tohoku Shinkansen, spinning them off to the prefectures to run as it is not interested in running regional rail at the low densities of northern Japan and the intercity functions were all rolled into the Shinkansen.

So in that sense, any cost saving was spurious: Amtrak simply removed some, but not all, Master Plan projects that are obviated by the plan for a bypass. It’s no different from the fact that the Tokaido Main Line and the PLM Line are still double-tracked, as in both cases the national railroad chose to build high-speed rail parallel to them instead of to quadruple-track them to boost capacity.

But on top of that, there is at least some cost overrun implied in the plan. The cost breakdown is not detailed enough to make this clear, but the cost of the Gateway Tunnel is up to $14.7 billion, from $10-13.5 billion last year. It’s buried deep enough that it’s hard to see, or discern what the total overrun is, but it’s there. So Amtrak has a surreptitious cost escalation for the Gateway project at the same time as a spurious cost saving from partially merging the Vision and the Master Plan.

Northeast Corridor HSR, 90% Cheaper

Amtrak’s latest Next-Generation High-Speed Rail plan is now up to $151 billion, from a prior cost of $117 billion. This is partially a small cost escalation, but mostly including Master Plan upgrades to the legacy line. Per kilometer of route length, this means the project has now crossed the $200 million/km mark, a higher cost than 60%-underground Chuo Shinkansen maglev. The primary cause of the high cost of Amtrak’s project is the heavy amount of deep-cavern urban tunneling: nearly a tenth of the cost is the Gateway Tunnel, a rebranded bundling of ARC into the project, and a similar amount is a similar project in Philadelphia. At least this time they’re serving Rhode Island with a stop in or near Providence rather than Woonsocket.

In contrast with this extravaganza, it is possible to achieve comparable travel times for about one tenth the cost. The important thing is to build the projects with the most benefit measured in travel time reduced or reliability gained per unit of cost, and also share tracks heavily with commuter rail, using timed overtakes to reduce the required amount of multi-tracking.

I propose the following general principles, guiding any future development in the corridor:

1. Rolling stock is cheaper than infrastructure. This is not true everywhere, but the Northeastern US and Japan both have high infrastructure-to-equipment cost ratios. A Shinkansen train today costs about $4 million per car judging by how much Taiwan pays. A 16-car train every 15 minutes from Washington to Boston, with a one-way travel time including turnaround of about 3:30, would require 30 sets, or 480 cars, or $2 billion. Therefore, it makes financial sense to demand more of the rolling stock: some tilting as present on the Talgo, Pendolino, N700, or E5; high initial acceleration as present on the N700-I; and high power-to-weight ratio as on the Talgo and Shinkansen models, or even possibly an all-cars-powered Pendolino.

The difference between an average and a top-rate train could easily amount to 20 minutes between Washington and Boston. Making up those 20 minutes with infrastructure, once the easiest projects have been completed, would cost far more than $2 billion.

2. Speed up commuter trains instead of bypassing them. The place where this is most obvious and useful is the Boston-Providence segment. I have nothing to add that I didn’t already say in my pair of posts on the subject last year. Something similar is true between Baltimore and Washington. It is more difficult between New York and New Haven, but at least there are curves that have to be bypassed anyway, and so the track sharing can be reduced to a manageable degree given the line’s heavy commuter traffic.

This requires fixing agency turf battles, which costs a lot of political capital but is almost free to the taxpayer. In contrast, long multi-track segments, often with new viaducts, easily run into the billions. Amtrak’s single biggest question mark east of New York is the string of tunnels from Penn Station to New Rochelle to Danbury, all so that it doesn’t have to share tracks with Metro-North. It could buy the commuter operations and subsidize them forever and still come out ahead of all those tunnels.

3. The regulations should be based on service needs. As a corollary of #1 and 2 and the every minute counts philosophy they espouse, the regulations should allow trains that can operate safely. Here safety is determined by actual practice and track record, rather than what the FRA thinks safety is, which has an incidental relationship with reality. That Shinkansen trains do not meet UIC standards should not be even a minor issue; trains in Japan are safer than in the UIC’s prime-mover European countries.

4. On shared segments that aren’t bypassed, build infrastructure that allows higher speeds. This is a corollary of #2: if legacy routes are to be upgraded rather than bypassed, there’s no point in assuming present-day speed limits, such as Metro-North’s 75 mph/120 km/h limit in Connecticut, will remain in place, and therefore projects should be built with high radius of curvature. Assume that large portions of the New Haven Line will host trains going at 240 km/h.

5. Make sure station throats allow full speed. Every non-geometric restriction on speed – tunnel diameter, track condition, switches – should be eliminated. Higher-speed switches are cheaper than new concrete pouring; more precise track maintenance is cheaper than most people realize, standing at about $100,000 per double-track-km on average; Shinkansen trains’ noses are designed (and European trains’ noses can be modified) to allow full speed through narrow tunnels, as Shinkansen construction standards minimize tunnel diameter to reduce costs.

The time cost of even a short segment inhibiting full-throttle acceleration in station throats is higher than most people realize. A kilometer a train has to wend at 50 km/h when it could go 200, such as the Penn Station throat, is worth 54 seconds. At stations closer to full-speed zone, this speed-restricted kilometer slows the train’s acceleration to full speed further down the line, and thus it comes at the expense of a kilometer at 300-360 km/h, raising the time cost even further.

6. Fix curves in higher speed zones. This applies mainly to the S-curve flanking I-287 in Metuchen: its curvature is not terrible, but because to its south there are no geometric speed restrictions for tens of kilometers and to its north the curves are also reasonably gentle, its bang for the buck can be surprisingly high.

7. Worry about track capacity when all other capacity factors have been optimized. An intercity railroad that runs 8-car trains is definitionally not at capacity. Running 16-car trains requires lengthening a small number of platforms, most at easy locations. Doubling train capacity across the Hudson chokepoint requires building a new tunnel under the river. Amtrak currently runs 4 trains per hour into Penn Station at the peak; if after everything else has been built it has exhausted the capacity of 4 trains per hour each with 16 cars and a thousand seats, its operating profits will let it pay for any further expansion.

With the above seven principles, one could come up with a reasonable set of projects of immediate significance. With a total cost in the single-digit billions, they’d eliminate most of the barriers to full-speed travel between New York and Washington, and leave New York-Boston with just one major problem section between Stamford and Milford. Best-practice trains, even ones optimized for a straighter route – for example, Shinkansen or the Talgo, but not the Pendolino, which is both heavier and less powerful but has a much larger degree of tilting – could go from Boston to Washington in about 4 hours, or not much more.

Getting this further down to 3 hours would require further investment according to the same principles, but even 4 hours, by virtue of the markets to and from New York, would generate the profits required to pay for them. Moreover, the contrast between fast travel on bypass segments in eastern Connecticut or straight legacy segments in Rhode Island and New Jersey and the remaining slower problem segments would create political will to complete the system. The areas with the most NIMBY resistance should be left for last, because today’s train riders as well as Amtrak itself are not nearly as powerful as they will be if the mostly NIMBY-free projects cut train travel time from 7 hours to 4.

Why Moynihan Station Has Negative Transportation Value

Amtrak has been making noises again about the need for Moynihan Station as a replacement concourse for Penn Station for Amtrak travelers, but makes it clear it does not want to pay almost anything for it. While former Amtrak President David Gunn withdrew from the project on the grounds that it would not increase track capacity, and another former president criticized the project for the same reason, today’s Amtrak is interested in the prospects of not sharing concourse space with commuter trains.

The irony is that what Amtrak perceives as the value of Moynihan Station is actually negative value. Penn Station already has a problem with concourse integration – different concourses have different train arrival boards, and different ticket-vending machines. The need to change concourses lengthens access time, in my experience by a minute or two. Right now, Amtrak has just gotten $450 million to increase top speed in New Jersey from 135 mph to 160 mph for a 24-mile stretch (150 under current regulations), for a time saving of 100 seconds (64 if only 150 mph is possible) minus acceleration and deceleration time. From my perspective as a passenger, the minute or two I lose every time I need to change concourses at Penn Station is worse than a minute or two spent on a train.

Separating the concourses completely is even worse when it comes to access and egress times. In comments on Second Avenue Sagas, Jim (who comments here as well) says that the move one block to the west is not too bad for intercity travelers, because to get to Midtown hotels, people would take the E anyway. However, people who live in New York and wish to travel elsewhere, or people who visit but do not stay at Midtown hotels, are likelier to take the 1/2/3, and Amtrak as well as local Moynihan Station boosters want them (us) to need to travel an extra crosstown block to travel. That’s 3 extra minutes of access time; at current costs, how many extra billions would have to spent to save them on the train?

Even the stated purpose of Moynihan Station, bringing people to the city in grandeur, fails. The building is a former post office rather than a train station; its former main entrance (still leading to the post office – thanks to Jim for the clarification) requires people to climb stairs. There are planned to be step-free entrances, but those remove much of the neo-classical grandeur.

From the perspective of intercity rail passengers, the biggest problem with Penn Station is the tracks and track access. The platforms are narrow, and visibility is obscured by columns, staircases, escalators, and elevators. But even what exists is not used to its fullest extent. Although Amtrak checks all passengers’ tickets on board, it also conducts a prior check at the station, funneling all passengers through just one access point and lengthening the boarding process. It’s possible to go around the check by boarding from the lower concourse, but Amtrak trains are not posted there, requiring passengers to loiter on the upper concourse, see what track the train arrives on (information which is typically posted only 15 minutes before departure), and scramble. As a result of the convoluted boarding process, Regional trains dwell 15 minutes at Penn Station, and Acela trains dwell 10 minutes. Many of those minutes could be saved by just better station throughput.

If more infrastructure is needed, it is not a separate passenger concourse, but better platforms and platform access. Some of the platforms – namely, the southern ones, hosting New Jersey Transit trains but not Amtrak trains – have too few access points, and require additional staircases and escalators.

More radically, platforms may need to be widened, at the expense of the number of tracks. This is one of the advantages of regional rail through-running, though in reality, even today clearing a full rush-hour commuter train is fast enough (about 1.5-2 minutes on the LIRR) that at least the LIRR could stand to have tracks paved over and still have enough terminal capacity for its current needs; New Jersey Transit, which has fewer tracks and trains with worse door placement and smaller vestibules, may have problems, but Amtrak doesn’t use its regular tracks because they do not connect eastward.

Amtrak’s history with Moynihan Station is especially telling about the company’s priorities. Clearly, Moynihan is not a priority – that’s why Amtrak says it has no money for it, and that’s why Gunn removed it from the company’s list of projects. The biggest supporters of Moynihan are local boosters and developers, who want the extra retail space. The planned expenditure on the project is $14 billion: $2 billion in public money for the train station, the rest in private money for development around it. The family of Daniel Moynihan is a strong backer of a monument named after the late Senator. It is not surprising that a project whose benefit goes entirely to power brokers and not to transportation users is backed by the locals the most: Amtrak and federal agencies may be dysfunctional, but they are models of efficiency compared to the local governments in the US.

However, Amtrak is incapable of saying no to monuments and megaprojects that it thinks will benefit it. More crucially, it will argue for their construction. Its symbiotic relationship with local governments seems to be, we’ll support your boondoggles if you support ours. Today’s Amtrak is not Gunn’s Amtrak, but the Amtrak that fired Gunn for refusing to defer maintenance in order to boost on-paper profitability.

Moynihan Station represents a failing of not only transportation planning, but also urban planning. More than any other project in New York, it brings back my original analogy between today’s urban boosterism and the modernist suburbanism of the first two-thirds of the 20th century. The project’s backers tell us a story: Penn Station was a magnificent edifice destroyed by thoughtless planners, and now we must repair the damage and restore style to passenger railroad travel. Since they base their conception of infrastructure on moral and aesthetic claims, which always seem to coincide with what gives them more money and kudos, they do not care whether the project is beneficial to users, and find the preexisting situation self-evidently bad.

Because the argument for Moynihan is entirely about the need for a grand, morally good projects, the backers spurn incremental improvement of what already exists, finding it so repulsive that it must be replaced no matter what. This is quite similar to how some proponents of suburbanization opposed improving tenements on the grounds that it would detract from the purpose of razing them and sending their residents out to single-family houses.

For example, both Moynihan backers and New Jersey Transit have complained about lack of space for passenger circulation at Penn Station; in reality, IRUM‘s George Haikalis has computed that about half of the lower concourse’s space is used for Amtrak back offices and concessions rather than for passenger circulation. In reality, Penn Station’s low ceilings make the station appear cramped, but the concourses are still fairly functional, and even at rush hour the crowding level is normal by the standards of what I’ve seen at Paris’s Gare de Lyon and at Nice’s main station.

This interplay between bad local governance and federal agencies that coddle it is part of what caused Amtrak’s Vision plan to be so bloated. The single worst component, the new tunnels through Philadelphia, appear to come from Amtrak’s belief that the local officials want strict separation of high-speed and commuter train infrastructure, coming from the fact that the locally-designed Penn plan included such tunnels. And in New York, Amtrak’s proposed its own marked-up version of ARC, one that is not too much better than the cavern plan that was under construction. On a smaller scale, the Harold Interlocking separation, primarily a New York State project benefiting commuter rail riders, made it to Amtrak’s list of desired incremental improvements, and is now receiving funding earmarked to high-speed rail.

The only special trait distinguishing Moynihan from those other unnecessary or bloated projects is that it’s harmful to riders, rather than neutral or insufficiently beneficial. The main backers of the project do not care much for transportation users, but Amtrak should. It seems to believe that its passengers want to spend time sitting at its train stations as if they were airline lounges; nowadays, not even air travelers like spending time at airports, which is why such time-saving features as printing boarding passes at home are so popular. The only positive thing to say about the project is that the cost is so high relative to the effect on passengers that the return on investment is very close to zero, rather than the -4% figures seen for long-distance Amtrak projects. And I don’t think that “This project only has an ROI of -0.2%” is a valid argument for construction.