Category: Incompetence

When Through-Running Is Inappropriate

I support through-running of regional trains: as far as possible, trains should not terminate in major city centers, but instead run through to urban neighborhoods and suburbs on the other side of the CBD. My first blog posts made this point about New York, and over the years I’ve written about this in the contexts of New York, Boston, Washington, Chicago, and Tel Aviv. However, in secondary cities, through-running is not always appropriate policy. If a city is near the edge and not at the center of its metro area, then quite often it’s preferable to run a separate service, which may overlap the primary city’s regional rail system. In some cases, through-running is actively harmful; unfortunately, this is currently done in San Jose and Providence.

Theory

Consider the following example city:

throughrunexample

The metro area lies on an east-west rail line, and consists of a central city several suburbs; higher-density areas are denoted by darker shades, with the primary CBD in the darkest shade. The city proper also has five secondary CBDs, two of which are on the rail line. On the west, one suburb, really a secondary city, is larger than the rest, and has its own CBD, as job-dense as one of the primary city’s secondary CBDs. With rough symmetry of suburban demand west and east, there is no good reason why trains should not through the primary CBD, and good reasons why they should:

  • People in the eastern suburbs may work in the secondary CBD just west of the primary one, and people in the western suburbs may work in the secondary CBD just east of the primary one.
  • The primary CBD may not have room to park trains at rush hour without a costly railyard expansion.
  • People within the central city may use the line as a rapid transit trunk, to get to either the primary CBD or the two secondary CBDs on the line, as well as to residential neighborhoods not depicted in the diagram.

This is relatively uncontroversial – urban transit is designed along the same guidelines. Also uncontroversial is the question of how far east the commuter line should run: the diagram shows a string of medium-size suburbs, so the line should run as far as the easternmost one, potentially with short-turn runs if the trains at the end are too empty.

The real controversy is how far west to run the service. On the one hand, the secondary city provides a natural outer anchor, with some reverse-peak ridership potential, so there’s an argument for terminating service there. I have criticized the Human Transit model of anchoring as a matter of urban planning, but as a matter of transit planning with fixed urban layout, it is sound; see explanations here and here. On the other hand, there are two smaller suburbs farther west, where people might want to commute to either the primary city or the secondary one, so perhaps service should run farther, with many trains short-turning at the secondary city to avoid running too many empty trains at the western end.

Which of the two options is better – terminating services at the secondary city or continuing onward – depends on the frequency the trunk rail line can support. The reason is that continuing onward requires a very large drop in capacity to avoid empty trains. In the depicted diagram, in relative units, 10% of the western suburbs’ built-up residential area is west of the secondary city; maybe another 10% is the western areas of the secondary city, which could host a station in addition to that at the city’s center. This means that nearly all trains should short-turn; only perhaps one in three or four should continue. If the demand is so intense that a quarter of the base frequency is enough, then trains should continue. But most likely, it isn’t. An individual commuter line with a train every 10 minutes off-peak would be stepped down to every half an hour at the western end, which is borderline; a train every 10 minutes off-peak almost never happens outside Paris, Tokyo, and other enormous systems, except when multiple branches interline to a single trunk.

The alternative is to terminate commuter trains at the secondary city, but then run supplemental service, centered at the secondary city. This supplemental service is not supposed to serve demand into the primary city, handling supercommuters from the western end via a timed transfer (with possible peak through-service), so it can run shorter trains at higher frequency. Sometimes, the secondary city’s CBD must be judged too auto-oriented to be served with commuter rail, and then the correct service pattern is no trains at all west of the secondary city.

Examples

In both Providence and San Jose, a situation akin to the above diagram occurs, except without any through-service beyond the primary CBD (respectively, Boston and San Francisco). Of course, San Jose has more residents than San Francisco, 1.03 million compared with 870,000, but it has only 360,000 jobs to San Francisco’s 610,000. Moreover, San Jose’s employment is more dispersed; according to OnTheMap, its CBD’s job density is about comparable to that of Providence’s CBD. Evidently, Caltrain ridership is 13,600 per weekday at San Francisco and 4,200 at San Jose Diridon (PDF-p. 6 here), with both stations located somewhat away from their respective cities’ CBDs. A proper comparison of Providence to Boston is harder to make, since South Station has multiple line and not just the Providence Line, but Providence’s secondary role within New England is well-understood.

In both cities, service runs beyond the secondary city, at reduced frequency. Between San Francisco and San Jose, Caltrain runs 5 trains per hour at the peak, and a train every hour off-peak; but Caltrain also runs three trains per day in each direction south to Gilroy, 47 km to the south (San Francisco-San Jose is 77 km). Between Boston and Providence, a distance of 70 km, the MBTA runs 3-4 trains per hour at the peak and a train every 1.5-2 hours off-peak, but one train per hour at the peak and one train every four hours off-peak continues another 31 km south to Wickford Junction.

Both tails, to Gilroy and to Wickford Junction, are significant drags on the ability of their respective cores to modernize. Ridership is very low: Tamien, just south of San Jose Diridon, has 1,100 weekday riders, but the sum total of all the stations to its south is 559; the two stations south of Providence have between them 454 weekday riders, compared with about 2,300 at Providence and 20,000 on the Providence Line overall (see PDF-pp. 74 and 77 of the 2014 MBTA Bluebook). In both cases, low ridership is a cause of poor service rather than a consequence: Clem Tillier tallied the population and job densities near each Caltrain station and found that, except in the southern neighborhoods of San Jose, there is no real ridership potential on the Gilroy extension; a similar analysis of the Providence Line’s tail has not been carried out, but one of its two stations is in a low-density suburb without many Boston-bound commuters, while Wickford Junction is surrounded by undeveloped land. Caltrain is currently planning to electrify south to Tamien, but there is no justification for continuing electrification further, which means that maintaining Gilroy service would require mixing diesel locomotive-hauled trains with lightweight EMUs; moreover, south of Tamien, the tracks are owned by Union Pacific rather than by Caltrain, and UP has little interest in allowing modern passenger trains on its tracks. In Rhode Island, an additional complication is that the line from Providence down to Wickford Junction is prime high-speed rail territory, and commuter rail ridership is frankly too low to justify complex scheduling with multiple overtakes, unlike the situation farther north in Massachusetts.

In the Bay Area, there is little that can be done, due to the low potential ridership south of Tamien, San Jose’s suburban layout and the distance of Diridon from the CBD, and UP ownership of the tracks. Perhaps a few diesel trains could run to San Jose Diridon with timed transfers to the electrified line from Tamien to San Francisco, but quite likely service could just be canceled. In Rhode Island, Wickford Junction should probably be closed due to low ridership, but Peter Brassard proposed an alternative, a Providence-focused line running short trains at medium frequency (perhaps once every 15 minutes), with very short interstations in order to serve Providence neighborhoods and not just the CBD. Such a line, running at the same average speed as a freight train due to the frequent stops, would interfere heavily with intercity trains, which means that four-tracking the line is a necessary precondition, as discussed here, but this may be worth it given potential local ridership. The most constrained part of the right-of-way is alongside the Route 10 expressway, which requires considerable repairs and is currently being overhauled at high cost.

Amtrak’s Rolling Stock Order: Followup

A year ago, based on a leak from Senator Charles Schumer’s office, I attacked Amtrak for paying double for its new high-speed trains – $2.5 billion for 28 trainsets, about $11 million per car. Amtrak at the time denied the press release, saying it was still in the process of selecting a bidder. However, last week Amtrak announced the new order, confirming Schumer’s leak. The trainsets are to cost $2 billion, or $9 million per car, with an additional $500 million spent on other infrastructure. The vendor is Alstom, which is branding all of its export products under the umbrella name Avelia; this train is the Avelia Liberty.

You can see a short promotional video for the trains here and read Alstom’s press release here. Together, they make it obvious why the cost is so high – about twice as high per car as that of Eurostar’s Velaro order, and three times as high as that of the shorter-lived N700 Shinkansen. The Avelia Liberty is a bespoke train, combining features that have not been seen before. Technical specs can also be seen in Alstom’s press kit. The Avelia Liberty will,

  • Have a top speed of 300 km/h.
  • Have articulated bogies.
  • Be capable of 7 degrees of tilt, using the same system as in Alstom’s Pendolino trainset.

In particular, the combination of high speed and high degree of tilt, while technically feasible, does not exist in any production train today. It existed in prototype form, as a tilting TGV, but never made it to mass production. The Pendolino has a top speed of 250 km/h, and the ICE-T has a top speed of 240 km/h. Faster tilting trains do not tilt as much: Talgo claims the Talgo 350 is capable of lateral acceleration of 1.2 m/s^2 in the plane of the train, which corresponds to 180 mm of cant deficiency, achievable with 2-3 degrees of tilt; the tilting Shinkansen have moderate tilting as well, which the JRs call active suspension: the N700 tilts 1 degree, and appears capable of 137 mm of cant deficiency (270 km/h on 2.5 km curves with 200 mm cant), whereas the E5 and E6 tilt 2 degrees, and appear capable of 175 mm (in tests they were supposed to do 360 km/h on 4 km curves with 200 mm cant, but only run at 320 km/h for reasons unrelated to track geometry).

I have argued before, primarily in comments, that a train capable of both high speed and high degree of tilt would be useful on the Northeast Corridor, but not at any price. Moreover, the train is not even planned to run at its advertised top speed, but stay limited to 257 km/h (160 mph), which will only be achievable on short segments in Massachusetts, Rhode Island, and New Jersey. Amtrak has no funded plan to raise the top speed further: the plans for constant-tension catenary in New Jersey are the only funded item increasing top speed. There is no near-term plan on the horizon to obtain such funding – on the contrary, Amtrak’s main priority right now is the Gateway tunnel, providing extra capacity and perhaps avoiding a station throat slowdown, but not raising top speed.

Running trains at 300 km/h on the segments that allow the highest speeds today, or are planned to after the speedup in New Jersey, would save very little time (75 seconds in New Jersey, minus acceleration and deceleration penalties). Making full use of high top speed requires sustaining it over long distances, which means fixing curves in New Jersey that are not on the agenda, installing constant-tension catenary on the entire New York-Washington segment and not just over 40 km of track in New Jersey to eliminate the present-day 215 km/h limit, and building a bypass of the entire segment in southeastern Connecticut along I-95. None of these is on the immediate agenda, and only constant-tension catenary is on the medium-term agenda. Hoping for future funding to materialize is not a valid strategy: the trains would be well past the midpoint of their service lives, and spend many years depreciating before their top speed could be used.

What’s more, if substantial bypasses are built, the value of tilting decreases. In advance of the opening of the Gotthard Base Tunnel, Swiss Federal Railways (SBB) ordered 29 trainsets, without tilting, replacing the tilting Pendolino trains that go through the older tunnel. SBB said tilting would only offer minimal time reduction. The eventual cost of this order: about $36 million per trainset as long as 8 US cars. On the entire Northeast Corridor, the place where tilting does the most to reduce travel time is in Connecticut, and if the eastern half of the tracks in the state are bypassed on I-95, tilting loses value. West of New Haven, tilting is not permitted at all, because of Metro-North’s rules for trains using its tracks; on that segment, tilting will always be valuable, because of the difficulty of finding good rights-of-way for bypasses not involving long tunnels, but to my knowledge Amtrak has not made any move to lift the restriction on tilting. Even with the restriction lifted, a 300+ km/h train with moderate tilting, like the N700 or E5/6 or the Talgo AVRIL, could achieve very fast trip times, with only a few minutes of difference from a hypothetical train with the same top speed and power-to-weight ratio and 7 degrees of tilt. It may still be worth it to develop a train with both high speed and a high degree of tilt, but again, not at any cost, and certainly not as the first trainset to use the line.

Another issue is reliability. The Pendolino tilt system is high-maintenance and unreliable, and this especially affects the heavier Acela. SBB’s rejection of tilting trains was probably in part due to the reliability issues of previous Pendolino service across the Alps, leading to long delays. Poor reliability requires more schedule padding to compensate, and this reduces the advantage gained from faster speed on curves. While tilting trains are overall a net positive on curvy routes like the Connecticut segment of the Northeast Corridor, they are probably not useful in any situation in which 300 km/h top speeds are achievable for a meaningful length of time. This goes double for the Avelia Liberty, which is not a proven Pendolino but a new trainset, sold in a captive market that cannot easily replace it if there are maintenance issues.

In my post a year ago, I complained that Amtrak’s specs were conservative, and did not justify the high cost. I stand behind that assessment: the required trip times are only moderate improvements over the current schedule. At least between New York and Boston, the improvement (9 minutes plus stop penalty at New London) is less than the extent of end-of-line schedule padding, which is at least 10 minutes from Providence to Boston for northbound trains. However, to achieve these small trip time improvements, Amtrak elected to demand exacting specs from the trainsets, leading to high equipment costs.

In 2013, I expounded on this very decision by borrowing a Swiss term: the triangle of rolling stock, infrastructure, and timetable. Planning for all three should be integrated. For example, plans for increases in capacity through infrastructure improvements should be integrated with plans for running more trains, with publicly circulated sample schedules. In this case, the integration involves rolling stock and infrastructure: at low infrastructure investment, as is the case today, there is no need for 300 km/h trainsets, whereas at high investment, high top speed is required but 7-degree tilt is of limited benefit. Instead of planning appropriately based on its expectations of near-term funding, Amtrak chose to waste about a billion dollars paying double for trainsets to replace the Acela.

Northeast Corridor, 95% Cheaper: Frankford Junction

Amtrak’s plan for high-speed rail on the Northeast Corridor, at a cost of about $290 billion depending on the exact alternative chosen, is unacceptably costly. I went into some details of where excess cost comes from in an older post. In this post, I hope to start a series in which I focus on a specific part of the Northeast Corridor and propose a cheaper alternative than what the NEC Future plan assumes is necessary. The title is taken from a post of mine from four years ago; since then, the projected costs have doubled, hence the title is changed from 90% cheaper to 95% cheaper. In this post, I am going to focus on untangling Frankford Junction.

Frankford Junction is one of the slowest parts of the Northeast Corridor today south of New York. It has a sharp S-curve, imposing a speed limit of 50 mph, or 80 km/h. While worse slowdowns exist, they are all very close to station throats. For example, Zoo Junction just north of Philadelphia 30th Street Station has a curve with radius about 400 meters and an interlocking, so that superelevation is low. The speed limit is low (30 mph, or 50 km/h), but it’s only about 2 km out of the station; it costs about 2 minutes, and with proper superelevation and tilting the speed limit could be doubled, reducing the time cost to 25 seconds. In contrast, Frankford Junction is about 13 km out of 30th Street Station; an 80 km/h restriction there, in the middle of what could be a 200 km/h zone, makes it uneconomic for trains to accelerate to high speed before they clear the junction. This impacts about 4 km, making it a 108-second slowdown, which can be mitigated by either more tilting or a wider curve. In reality, a mixture is required.

The NEC Future plan for high-speed rail, the $290 billion Alternative 3, avoids the Frankford Junction S-curve entirely by tunneling under Center City and building a new HSR station near Market East, a more central location than 30th Street; see PDF-pp. 19, 20, and 78 of Appendix A of the environmental impact statement. This option should be instantly disposed of: 30th Street is close enough to the Philadelphia CBD, and well-connected enough to the region by public transit, that it is no worse a station choice than Shin-Osaka. The Tokaido Shinkansen could not serve Osaka Station as a through-station without tunneling; since Japan National Railways wanted to be able to extend HSR onward, as it eventually did with the Sanyo Shinkansen, it chose to serve Osaka via a new station, Shin-Osaka, 3 km away from the main station. Given the expense of long tunnels under Philadelphia, the slightly less optimal station today should be retained as good enough.

A lower-powered plan providing some HSR functionality, Alternative 2, does not include a new tunnel under Philadelphia, but instead bypasses Frankford Junction. On Appendix A, this is on PDF-pp. 19, 20, and 70. Unfortunately, the bypass is in a tunnel, which appears to be about 4 kilometers. The tunnel has to cross under a minor stream, Frankford Creek, adding to the cost. Instead, I am going to propose an alignment that bypasses the tunnel, with moderate takings, entirely above ground.

In brief, to minimize trip times without excessive construction, it is best to use the highest superelevation and cant deficiency that HSR technology supports today. The maximum superelevation is 200 mm, on the Tokaido Shinkansen (link, PDF-p. 41); there were plans to raise superelevation to 200 mm on the Tohoku Shinkansen, to permit a maximum speed of 360 km/h, but they were shelved as that speed created problems unrelated to superelevation, including noise, pantograph wear, and long braking distances. The maximum cant deficiency on existing trainsets capable of more than 300 km/h is about 180 mm, including the E5/E6 Shinkansen and the Talgo 350 and Talgo AVRIL. Tilting trains capable of nearly 300 mm cant deficiency exist, but are limited to 250 km/h so far. With 200 mm superelevation and 175 mm cant deficiency, speed in meters per second equals square root of (2.5 * curve radius in meters); the minimum curve radius for 200 km/h is then 1,235 meters.

An S-curve requires some distance to reverse the curve, to avoid shocking the train and the passengers with a large jerk, in which they suddenly change from being flung to the right to being flung to the left. If you have ridden a subway, sitting while the train was decelerating, you must have noticed that as the train decelerated, you felt some force pushing you forward, but once the train came to a complete stop, you’d be pulled backward. This is the jerk: your muscles adjusted to being pushed forward and resisting by pulling backward, and once the train stopped, they’d pull you back while adjusting back to the lack of motion. This is why S-curves built a long time ago, before this was well-understood, impose low speed limits.

With today’s computer-assisted design and engineering, it’s possible to design perfect S-curves with constant, low jerk. The limits are described in the above link on PDF-pp. 30 and 38. With the above-described specs, both sets of standards described in the link require 160 meters of ramp. For a single transition from tangent track to a fully superelevated curve, this can be modeled very accurately as 80 meters of straight track plus the circular curve (half the transition spiral is within the curve); the displacement from an actual spiral curve is small. For an S-curve, this requires double the usual transition, so 160 meters of tangent track between the two circles; bear in mind that this distance grows linearly with speed, so on full-speed 360 km/h track, nearly 300 meters are required.

Here is a drawing of two circles and a tangent track between them. The curve of course consists only of a short arc of each circle. The straight segment is a little less than 700 meters, which permits a gentle spiral. The curves have radius 1,250 meters. Takings include a charter school, a wholesale retailer, an auto shop, and what appears to be industrial parking lots, but as far as I can tell no residences (and if I’m wrong, then very few residences, all very close to industrial sites). The charter school, First Philadelphia Preparatory, is expanding, from 900 students in 2012-3 to an expected 1,800 in 2018-9. School construction costs in Pennsylvania are high, and $100 million is expected for a school of that size; see also table 5 on PDF-p. 7 here for national figures. The remaining takings are likely to cost a fraction of this one. Even with the high cost of takings, it is better to realign about 2 kilometers of track above-ground, at perhaps $150 million, than to build 4 km of tunnel, at $1.5 billion; both figures are based on cost items within the NEC Future . This represents a saving of about 83% over Alternative 2, which is projected to cost $116-121 billion excluding rolling stock (PDF-p. 42 of chapter 9 of the EIS).

Given the long spiral length, it may be feasible to avoid the charter school entirely. This would probably require shrinking curve radius slightly, permitting 180 or 190 km/h rather than 200 km/h. However, the travel time cost is measured in seconds: with about 11 km from the end of Zoo Junction to the northern end of Frankford Junction, of which 1 is required just to accelerate to speed, the difference between 200 and 180 km/h is 20 seconds. Further savings, reducing this time difference, are possible if the speed limit without taking the school is 190, or if trains accelerate to 200, decelerate to curve speed, and accelerate again to the north. This option would improve the cost saving over Alternative 2 to about 90%.

The correct way forward for affordable improvement of the Northeast Corridor is to look for ways in which expensive infrastructure can be avoided. If a tunnel can be replaced by a viaduct at the cost of a few extra takings, it should be. If an expensive undertaking can be avoided at the cost of perhaps 10 seconds of extra travel time, then it probably should be avoided. There should be some idea of how much it’s acceptable to spend per minute of marginal travel time saving, by segment: the New York-Philadelphia segment has the heaviest traffic and thus should have the highest maximum cost per unit of time saved. But even then, $100 million for 20 seconds is probably too high, and $100 million for 10 seconds is certainly too high.

Select Bus Service Problems

I recently visited New York. I stayed in Kew Gardens Hills, a neighborhood located between Jamaica and Flushing, just close enough to the subway that it’s plausible to walk but just far enough that this walk is uncomfortable and I preferred to take a bus. The bus route, Main Street, is one of Queens’ busiest (see data here and here). I’ve been calling for investment in it for years, going back to a fantasy spite map I drew so long ago I don’t remember what year it was, and continuing more recently in my post on where New York should and shouldn’t build light rail. Last year, the route did get Select Bus Service, and I took it a few times. The result is not good.

Main Street maintains two bus corridors: the local Q20, and the Select Bus Service Q44. Almost every SBS route is an overlay of a local route and a rapid route; on the local route passengers must board from the front and pay within view of the driver, and on the rapid route passengers must validate a ticket at ticketing machines beforehand and can then board the bus from any stop, with the fare enforced via random checks for ticket receipts. This leads to the following problems, some preventable, some inherent to this setup:

  1. Passengers who can take either the local or the SBS route need to decide in advance whether to validate their tickets at the machines or not, based on whether the next bus is SBS. The resulting last-minute validation delays boarding. After the mayhem caused by the introduction of SBS to the M15, on First and Second Avenues, bus drivers on local routes began to accept the receipts spitted out by the SBS ticketing machines. However, this practice is either inconsistent or not widely-known among occasional bus riders, such as the people I was staying with, who own cars.
  2. The combination of local and limited buses on a medium-frequency route such as Main Street makes it impossible to maintain even headways. Even within each route (Q20 or Q44) I repeatedly saw bunching, but the different speeds of the Q20 and Q44 make bunching between a local and an express inevitable at some point on the route. Off-peak weekday frequency is 10 minutes on the Q20 and 8 on the Q44, which isn’t good enough to justify this split, especially given the bunching within each route; some stations will always be scheduled to have 8-minute service gaps, and in practice could see 15-minute gaps because of the bunching. See more on this problem of locals and rapids on infrequent routes on Human Transit.
  3. The expense of the ticketing machines ($75,000 per stop for a pair of modified MetroCard vending machines and a machine that takes coins) limits how widely they can be installed. Everywhere else where proof-of-payment is used, holders of valid transfers and season passes can just board the train or bus and show their pass to an inspector. This would be especially useful in New York, because the biggest crunch at SBS stops occurs when many passengers arrive at the stop at once, which in turn is the most common where passengers transfer from the subway. The slow process of validating a ticket leads to queues at busy times, and adding more machines is difficult because of their cost.
  4. Stop spacing is never what it should be. Most developed countries have converged on a standard of about 400-500 meters between successive bus stops. North America instead has converged on 200 meters, leading to slow buses that stop too often; see an old Human Transit post on the subject here. The stop spacing on the segment of the Q44 I was using was two stops in 1.7 km, leading to long walks between stops.
  5. On the schedule, the Q44 makes 15 stops in 9.2 km between its origin in Jamaica and Flushing, and takes 42 minutes in the midday off-peak. This is an average speed of 13.1 km/h. In contrast, Vancouver’s limited-stop buses, which average about a stop per kilometer on Broadway and 4th Avenue, average 20 km/h and 30 km/h respectively; the 4th Avenue buses do not have off-board fare collection, but there’s less traffic than on Broadway, and the stoplights give priority to through-traffic, both private and public, over crossing traffic.

The basic problem with New York’s approach to Select Bus Service is that all North American bus rapid transit ultimately descends from Jaime Lerner’s sales pitch of BRT as a cheap subway on tires, at grade. Lerner implemented BRT in Curitiba successfully, in the context of low wages: construction costs appear to only weakly depend on wealth (see e.g. my posts here, here, here, here, and here), but bus driver costs rise with average income, making replacing fifteen bus drivers with one subway driver a crucial money saver in rich cities and an unaffordable luxury in poor ones. North American BRT imitates Latin American BRT’s role as a cheap subway substitute, and ignores the superior usage of bus services in Europe, with which American transit planners do not dialog; there’s no systematic dialog with Latin American planners either, but Lerner has aggressively pitched his ideas to receptive audiences, whereas no comparable figure has pitched European-style reforms to the US.

In cities that think of BRT as a subway substitute, the BRT network will tend to be small, consisting of a few lines only serving the most important corridors, and bundle various features of improved transit together (off-board fare collection, larger vehicles, bus lanes, signal priority). After all, a line can’t be partly a subway and partly a bus. In Bogota, whose BRT system has eclipsed Curitiba and is the world’s largest, the BRT lines run different vehicles from the local lines: local buses have doors opening on the right to the curb, BRT buses have doors opening on the left to a street median bus station, some hybrids have buses with doors on both sides (see photos on Spanish Wikipedia). ITDP, which promotes Latin American-style BRT around the world, has a BRT scoring guideline that awards points to systems that brand their BRT lines separately from the rest of the bus network, as New York does with SBS.

In the European thinking, there’s already an improved quality urban transit service: the subway, or occasionally the tram. The bus is a bus. The biggest difference is that subway networks are smaller than bus networks. Paris and London, both with vast urban rail networks, have a number of subway lines measured in the teens, plus a handful of through-running commuter services; they have hundreds of bus routes. Instead of branding a few buses as special, they invest in the entire bus network, leading to systemwide proof-of-payment in many cities. Bus lanes and signal priority are installed based on demand on an individual segment basis. New York installs bus lanes without regard to local versus SBS status, but retains the special SBS brand, distinguished by off-board fare collection, and only installs it on a per-route basis rather than systemwide.

The other issue, unique to New York, is the ticket receipts. Everywhere else that I know of, bus stops do not have large ticket machines as New York does. Vancouver, which otherwise suffers from the same problem of having just a few special routes (called B-Lines), has no ticket machines at B-Line stops at all: people who have valid transfers or  monthly passes can board at their leisure from any door, while people who don’t pay at the front as on local buses. SBS in contrast does not give passengers the option of paying at the front. In New York, people justify the current system by complaining that the MetroCard is outdated and will be replaced by a smart card any decade now; in reality, systems based on paper tickets (including Vancouver, but also the entire German-speaking world) manage to have proof-of-payment inspections without smartcards. Small devices that can read the MetroCard magnetic stripe are ubiquitous at subway stops, where people can swipe to see how much money they have left.

The right path for New York is to announce that every bus route will have off-board fare collection, regardless of stop spacing. It should also engage in stop consolidation to reduce the interstation to about 400-500 meters, but this is a separate issue from fare collection. Similarly, the question of bus lanes should be entirely divorced from fare collection. There should be no ticketing machines at bus stops of the kind currently used. At most, stops should have validators, similar to the MetroCard readers at subway turnstiles but without the fare barrier. Validators are not expensive: smartcard readers in Singapore are consumer items, available to people for recharging their cards at home via their credit cards for about $40, a far cry from the $75,000 cost in New York today. People with valid transfers or unlimited cards should be able to board without any action, and people without should be able to pay on the bus.

Finally, the split between local and rapid routes should be restricted to the busiest routes, with the highest frequency in the off-peak. Conceivably it should be avoided entirely, in favor of stop consolidation, in order to increase effective frequency and reduce bunching. The city’s single busiest route, the M15, has 7-minute SBS and 8-minute local service in the midday off-peak, and given how slow the local is, it’s enough to tip the scales in favor of walking the entire way if I just miss the bus.

De Blasio Versus Good Transit

In New York, the de Blasio administration has been spending considerable political capital pushing for a $2.5 billion light rail line connecting Astoria and the Brooklyn waterfront south to Sunset Park. There has been a lot of criticism from good transit advocates about implementation – namely, it’s unclear there will be free transfers to the subway and buses, in order to avoid having to share turf with the state-owned MTA – but also of the basic concept, which is not the biggest transit priority in the region, or for matter the twentieth. In comments and on social media, I’ve seen a few wrong arguments made in support of waterfront light rail and similar bad investments over and over, and I’d like to go in some detail into where cities should and should not build such lines.

The principles below are based on various oppositions: first world versus third world, fast versus slow growth, subway versus no subway. I think a good meta-principle is that if the presence of a certain factor is an argument in favor of a specific solution, then its absence should be an argument against that solution. For instance, if high wages are an argument in favor of rail and against bus rapid transit, then low wages should be an argument in favor of bus rapid transit; this principle makes me wonder what Addis Ababa was thinking when it built light rail instead of BRT, while at the same time thinking very little of American cities that make the decision that Addis Ababa should have made. The upshot of the meta-principle is that many of the guidelines that work in New York could work in very different cities, in reverse.

1. New York is a mature first-world city with low population growth; it should build transit exclusively or almost exclusively based on current population and transportation patterns, and not attempt to engage in development-oriented transit. The upzoning the city engages in is too small compared to current population, and cannot justify anything of the magnitude of Vancouver’s Expo Line, which was built simultaneously with Metrotown and the New Westminster offices around the train stations. And even Vancouver cannot reasonably expect the growth rates of various third-world cities with annual population growth rates in the vicinity of 5% and even higher per capita income growth rates.

2. Rail bias is approximately the same on all routes. Routes with many turns and narrow roads have unusually slow buses, but they’ll also have unusually slow surface rail. Rapid transit does have the ability to avoid the extra traffic jams coming from such alignments, and this is especially important in cities where the main street is not the same as the nearby wide boulevard, but this is not what’s under discussion in New York. Yes, de Blasio’s proposed light rail line would get more riders than the buses on segments of the route in question are getting now; the same would be true of any number of light rail routes paralleling the busiest buses in the city.

3. In a city with a subway, the best light rail routes are the ones that don’t make sense as subway extensions. Of the three busiest buses in New York, two make sense as subway lines, so there’s no point building light rail and only later a subway: the M15, on First and Second Avenues, and the B46, on Utica. In contrast, the third route, the Bx12 on Fordham, is crosstown, and cannot reasonably be an extension of any subway line, so it would be a strong light rail corridor. The same can be said of Main Street in Queens, between Flushing and Jamaica; and 14th and 86th Streets in Manhattan, where the M14 and M86 are the busiest surface routes in the US in terms of riders per kilometer, well ahead of the Boston Green Line (they both have about 8,000, and the Green Line 6,000). Of note, 14th Street already hosts the L, but a branch going on Avenue D is far from the subway, and the street is so well-trafficked that despite slower-than-walking bus speeds, that arguably light rail makes sense there even with the subway.

4. As soon as a project is judged as not a top priority, it’s best to think of how useful it is once the top priorities are built. In the case of New York, let us zoom in on Brooklyn’s top two circumferential buses, the B4 B6 and B35. Triboro RX is a higher priority than turning these routes into light rail, and once it’s in place, how much demand is there really going to be for them? It would be faster to take the subway and connect to Triboro, except at very short distances, where speeding up surface traffic is less useful.

In New York, excluding the somewhat special cases of 14th and 86th Streets, I’d say there are three light rail networks that make sense: one in the Bronx, one in Brooklyn, and one in Queens. The Bronx network involves taking the borough’s most frequent buses and turning them into light rail routes: the Bx12 on Fordham as noted above, but also the Bx1/2 on Grand Concourse (like 14th Street, hosting both a subway and a very busy bus route), the Bx19 on Southern and 145th, the Bx15 on Third, and a route on Tremont combining the Bx36 and the Bx40/42. These routes roughly form a grid, each has at least 30,000 weekday riders, and none is SBS except the Bx12. In this case, light rail should really be thought of as the next step after publishing a frequent grid map based on these routes and equipping the entire city bus fleet with off-board fare collection.

In Queens, there’s less room for a grid – the borough has street grids, but it really is based on several old centers, with major roads connecting them. The strongest routes are the ones that cannot reasonably be subway extensions, because they’re too circumferential; in turn, the strongest subway extension, i.e. Northern, is not a major bus route, because it’s close enough to the Queens Boulevard subway that people instead take the subway, which is overcrowded. Of the strong surface transit routes, the corridor with the highest ridership takes in several bus routes between Flushing and Jamaica; Main Street is the most important route, but potentially there’s room both there and on the second route, Kissena-Parsons. Other potential light rail routes radiate from Flushing and Jamaica, in directions not well-served by the subway and the LIRR, or even west on Queens Boulevard to help serve the gap in subway coverage between the 7 and the Queens Boulevard Line and relieve the subway lines.

Brooklyn is the most interesting. The main missing pieces in subway coverage in Brooklyn are good subway extensions: Triboro, Utica, Nostrand. With those in place, the only real gaps are Flatbush, and some route serving Red Hook. Possibly service to the Navy Yard may be desirable, but the area is not very well-developed right now, and the buses serving it have low ridership. Those are two or three routes radiating out of the same center in Downtown Brooklyn, which makes it tempting to not only build light rail on them, but also send it over the Brooklyn Bridge to City Hall. This would be like the subway-surface lines in Boston and San Francisco, where one underground trunk splits into several at-grade branches, except that in this case the trunk would be elevated rather than underground. It’s not worth building by itself, but the possibility of leveraging Brooklyn Bridge lanes for several light rail lines may make the ridership per unit of cost pencil out.

The common factor to all of these possibilities is that they are not meant for signature development areas that the city is targeting. Maybe there’s some new development there, but the focus is on improving public transit services to existing residents, who either are riding very slow buses or have given up on public transit because of the inconvenience. It can be marketed as an improvement in transit, but cannot really be sold as part of a plan to revitalize the Brooklyn waterfront. It’s about day-to-day governing, whereas the administration is interested in urban renewal schemes, which are rarely good transit.

New York’s Subway Frequency Guidelines are the Wrong Approach

In New York, the MTA has consistent guidelines for how frequently to run each subway route, based on crowding levels. The standards are based on crowding levels at the point of maximum crowding on each numbered or lettered route. Each line is designed to have the same maximum crowding, with different systemwide levels for peak and off-peak crowding. While this approach is fair, and on the surface reasonable, it is a poor fit for New York’s highly branched system, and in my view contributes to some of the common failings of the subway.

Today, the off-peak guidelines call for matching frequency to demand, so that at the most crowded, the average train on each route has 25% more passengers than seats. Before the 2010 service cuts, the guidelines had the average train occupied to exact seating capacity. At the peak, the peak crowding guidelines are denser: 110 passengers on cars on the numbered lines, 145 on shorter (60’/18 m) cars on the lettered lines, 175 on longer (75’/23 m) cars on the lettered lines. There’s a minimum frequency of a train every 10 minutes during the day, and a maximum frequency at the peak depending on track capacity. When the MTA says certain lines, such as the 4/5/6, are operating above capacity, what it means is that at maximum track capacity, trains are still more crowded than the guideline.

In reality, guideline loads are frequently exceeded. Before the 2010 service cuts, many off-peak trains still had standees, often many standees. Today, some off-peak trains are considerably fuller than 25% above seated capacity. In this post, I’d like to give an explanation, and tie this into a common hazard of riding the subway in New York: trains sitting in the tunnels, as the conductor plays the announcement, “we are delayed because of train traffic ahead of us.”

The key takeaway from the system is that frequency at each time of day is calculated separately for each numbered or lettered route. Even when routes spend extensive distance interlined, as the 2/3 and 4/5 do, their frequencies are calculated separately. As of December 2014, we have the following headways, in minutes:

Line AM peak Noon off-peak PM peak
1 3 6 4
2 6:30 7:30 6:45
3 6 8:30 6:45
4 4:30 7:30 4:24
5 5 8:30 5:45
6 2:30 4 3:18
7 2:30 5 2:30
A 4:45 10 4:45
B 8:45 10 9:15
C 9:15 10 10
D 6:15 10 6:45
E 4 7:30 4
F 4:45 7:30 5
G 6:30 10 10
J/Z 5 10 5
L 4:30 6 4
M 8:45 10 9:25
N 7:15 10 7:30
Q 7:15 10 7:45
R 7:30 10 7:30

Consider now the shared segments between the various lines. The 4 comes every 4.5 minutes in the morning peak, and the 5 every 5 minutes. There is no way to maintain even spacing on both lines with these headways: they share tracks for an extensive portion of their trip. Instead, the dispatchers move trains around to make sure that headways are as even as possible on both the shared trunk segments and the branches, but something has to give. In 45 minutes, there are ten 4s and nine 5s. Usually, on trunk lines with two branches, trains alternate, but here, it’s not possible to have a perfect alternation in which each 4 is followed by a 5 and each 5 is followed by a 4. There is bound to be a succession of two 4s: the second 4 is going to be less crowded than the guideline, and the following 5 is going to be more crowded.

It gets worse when we consider the extensive reverse-branching, especially on the lettered lines. For example, on its northbound journey, the Q initially does not share tracks with any line; then it shares tracks with the B, into Downtown Brooklyn; then it crosses into Manhattan sharing tracks with the N; then it again shares tracks with no other route, running express in Manhattan while the N runs local; then it shares tracks with the N and R into Queens; and then finally it shares tracks with the N in Queens. It is difficult to impossible to plan a schedule that ensures smooth operations like this, even off-peak, especially when the frequency is so variable.

Concretely, consider what happens when the Q enters Manhattan behind an N. Adequate separation between trains is usually 2 minutes – occasionally less, but the schedule is not robust to even slight changes then. To be able to go to Queens ahead of the N, the Q has to gain 4 minutes running express in Manhattan while the N runs local. Unfortunately, the Q’s express jaunt only skips 4 stations in Manhattan, and usually the off-peak stop penalty is only about 45 seconds, so the Q only gains 3 minutes on the N. Thus, the N has to be delayed at Herald Square for a minute, possibly delaying an R behind it, or the Q has to be delayed 3 minutes to stay behind the N.

In practice, it’s possible to schedule around this problem when schedules are robust. Off-peak, the N, Q, and R all come every 10 minutes, which makes it possible to schedule the northbound Q to always enter Manhattan ahead of the N rather than right behind it. Off-peak, the services they share tracks with – the B, D, and M – all come every 10 minutes as well. The extensive reverse branching still makes the schedule less robust than it can be, but it is at least possible to schedule non-conflicting moves. (That said, the M shares tracks with the much more frequent F.) At the peak, things are much harder: while the N, Q, and R have very similar headways, the D is considerably more frequent, and the B and M considerably less frequent.

I believe that this system is one of the factors contributing to uneven frequency in New York, with all of the problems it entails: crowding levels in excess of guidelines, trains held in the tunnel, unpredictable wait times at stations. Although the principle underlying the crowding guidelines is sound, and I would recommend it in cities without much subway branching, in New York it fails to maintain predictable crowding levels, and introduces unnecessary problems elsewhere.

Instead of planning schedules around consistent maximum crowding, the MTA should consider planning schedules around predictable alternation of services on shared trunk lines. This means that, as far as practical, all lettered lines except the J/Z and the L should have the same frequency, and in addition the 2/3/4/5 should also have the same frequency. The 7 and L, which do not share their track or route with anything else, would maintain the present system. The J/Z, which have limited track sharing with other lines (only the M), could do so as well. The 1 and 6 do not share tracks with other lines, but run local alongside the express 2/3 and 4/5. Potentially, they could run at exactly twice the frequency of the 2/3/4/5, with scheduled timed local/express transfers; however, while this may work for the 6, it would give the 1 too much service, as there is much more demand for express than local service on the line.

To deal with demand mismatches, for example between the E/F and the other lettered lines, there are several approaches, each with its own positives and negatives:

– When the mismatch in demand is not large, the frequencies could be made the same, without too much trouble. The N/Q/R could all run the same frequency. More controversially, so could the 2/3/4/5: there would be more peak crowding on the East Side than on the West Side, but, to be honest, at the peak the 4 and 5 are beyond capacity anyway, so they already are more crowded.

– Some services could run at exactly twice the frequency of other services. This leads to uneven headways on the trunks, but maintains even headways on branches. For example, the A’s peak frequency is very close to exactly twice that of the C, so as they share tracks through Lower Manhattan and Downtown Brooklyn, they could alternate A-C-A-empty slot.

– Services that share tracks extensively could have drastic changes in frequency to each route, preserving trunk frequency. This should be investigated for the E/F on Queens Boulevard: current off-peak frequency is 8 trains per hour each, so cutting the E to 6 and beefing the F to 12 is a possibility.

– Service patterns could be changed, starting from the assumption that every lettered service runs every 10 minutes off-peak and (say) 6-7 minutes at the peak. If some corridors are underserved with just two services with such frequency, then those corridors could be beefed with a third route: for example, the Queens Boulevard express tracks could be supplanted with a service that runs the F route in Jamaica but then enters Manhattan via 53rd Street, like the E, and then continues either via 8th Avenue like the E or 6th Avenue like the M. Already, some peak E trains originate at Jamaica-179th like the F, rather than the usual terminus of Jamaica Center, which is limited to a capacity of 12 trains per hour.

– The service patterns could be drastically redrawn to remove reverse branching. I worked this out with Threestationsquare in comments on this post, leading to a more elegant local/express pattern but eliminating or complicating several important transfers. In particular, the Broadway Line’s N/Q/R trains could be made independent of the Sixth Avenue trains in both Queens and Brooklyn, allowing their frequencies to be tailored to demand without holding trains in tunnels to make frequencies even.

For the lettered lines, I have some affinity for the fourth solution, which at least in principle is based on a service plan from start to finish, rather than on first drawing a map and then figuring out frequency. But it has two glaring drawbacks: it involves more branching than is practiced today, since busy lines would get three services rather than two, making the schedule less robust to delays; and it is so intertwined with crowding levels that every major service change is likely to lead to complete overhaul of the subway map, as entire routes are added and removed based on demand. The second drawback has a silver lining; the first one does not.

I emphasize that this is more a problem of reverse branching than of conventional branching. The peak crowding on all lines in New York, with the exception of the non-branched 7 and 1, occurs in the Manhattan core. Thus, if routes with different colors never shared tracks, it would not be hard to designate a frequency for each trunk route at each time of day, without leading to large mismatches between service and demand. In contrast, reverse branching imposes schedule dependencies between many routes, to the point that all lettered routes except the L have to have the same frequency, up to integer multiples, to avoid conflicts between trains.

The highly branched service pattern in New York leads to a situation in which there is no perfect solution to train scheduling. But the MTA’s current approach is the wrong one, certainly on the details but probably also in its core. It comes from a good place, but it does not work for the system New York has, and the planners should at least consider alternatives, and discuss them publicly. If the right way turns out to add or remove routes in a way that makes it easier to schedule trains, then this should involve extensive public discussion of proposed service maps and plans, with costs and benefits to each community openly acknowledged. It is not good transit to maintain the current scheduling system just because it’s how things have always worked.

Hyperloop Costs

Two years ago, when Elon Musk first proposed Hyperloop as a faster, cheaper, and more entrepreneurial alternative to California High-Speed Rail, I explained in depth what was wrong with the proposal. The curve radii were too tight for passenger comfort, and any attempt to fix them would require more expensive civil infrastructure. In general, the cost estimates in the plan were laughably low. Musk has moved on, but another team has been trying to build the system. It is planning to build a test track in the next three years, a distance of 8 km, for $150 million.

Let us analyze these costs. The per-km cost of this scheme is about $19 million, which if costs don’t run over is reasonable for HSR flat terrain, if anything a bit low. California HSR’s Central Valley segments, in more urbanized areas, are about $24-27 million/km, ex-electrification and systems (which don’t add much). This, in principle, suggests the system could be built for about the same cost as conventional HSR. Of course, it’s already far more expensive than Musk’s original estimate of $6 billion for about 650 km (including tunnels), but it still sounds like a good deal – in theory.

In practice, I’d like to go back to my often-quoted sentence in my post from two years ago, that Hyperloop would be a barf ride. The plan is to run capsules at their full speed, but only when empty. Tests with passengers would be restricted to 160 mph, or about 260 km/h. If the picture in the article describing the test track is accurate, the turn looks like its radius is perhaps 800 meters. Passengers can’t ride through this at very high speed. Even at 260 km/h, it requires full canting, and will make passengers feel noticeable extra gravitational push, about 0.2 g.

The importance of this is that any attempt to build tracks at higher speed will run into problems with both horizontal and vertical curves very quickly. The picture depicts sleek viaducts in empty land; imagine much taller viaducts, to allow the track to curve more gently than the terrain. Once the terrain becomes problematic, as it does on the approaches to the mountain crossings from the Central Valley to both the Los Angeles Basin and the San Francisco Bay Area, costs go up. This is true for any mode of transportation, up to and including mountain roads with hairpin turns, but the higher the speed, the larger the cost differential. In this situation, 4 km horizontal curve radii and 20 km vertical curve radii (about absolute minimum for conventional HSR) are expensive; 20 km horizontal curves and 230 km vertical curves are far more so. And within the urban areas, the inability of the system to leverage legacy rail tracks forces expensive urban viaducts.

When There’s Nothing Left To Burn, You Have To Set Money On Fire

Two recent news items have driven home the point that American construction costs are out of control. The first is the agreement between the federal government and the states of New York and New Jersey to fund the Gateway project, at a cost of $20 billion. The second is the release of more detailed environmental impact studies for high-speed rail on the Northeast Corridor; I previously expressed tepidly positive sentiment toward the NEC Future concept, but now there are concrete cost projections: the only full HSR option, Alternative 3, is projected to cost $290 billion. As Stephen Smith noted on Twitter, Alternative 3 is twice as expensive per km as the mostly underground Chuo Shinkansen maglev. As such, I am going to ignore other issues in this post, such as whether to serve Hartford on the mainline or not: they are real issues, but are secondary concerns to the outrageous cost figures.

Although both Gateway and NEC Future have extreme costs – too high for me to be able to support either project – the causes of those high costs are different. Gateway includes not just a new tunnel across the Hudson but also substantial unnecessary scope in Penn Station South; however, I suspect that even if the scope is pared down to the minimum required to provide four tracks from Newark to New York, the budget would still be very high. The bare Gateway tunnel (including Penn South) is to my understanding $14-16 billion; the maximum cost that can be justified by the extra ridership, unless additional operating improvements (which can be done today) are in place, is about $7 billion. As with Second Avenue Subway, there is a real problem of high unit costs. I emphasize that there is too much scope in Gateway, but the scope alone cannot explain why 5 km of tunnel cost many billions, when expensive non-US projects such as Crossrail top at a billion dollars per km and the geologically more complex Marmaray tunnel cost (in PPP terms) about $400 million per km.

The situation with NEC Future is different, in two ways. First, if Gateway cuts a zero from the budget, I will consider it a solid project, perhaps even an inexpensive one given the wide river crossing. (For reference, in 2003 the projected cost was $3 billion). In contrast, if NEC Future cuts a zero from its budget, I will still consider it too expensive – perhaps worth it because of the benefits of HSR, but certainly too high to be built without further inquiry. $29 billion for 720 km is justified for a line with a fair amount of tunneling and entirely greenfield construction, whereas the NEC has long segments that are already nearly ready for HSR and requires very little tunneling.

But second, and more importantly, NEC Future’s unit costs are not high. Read appendix B.06, which discusses cost: on PDF-p. 28 it breaks down cost by item, and other than the tunnels, which at $400-500 million per km are several times as expensive as intercity rail tunnels usually are, the infrastructure items’ per-km costs are reasonable. And the NEC doesn’t require much tunneling in the first place: Connecticut may be hilly, but HSR can climb 3.5% grades and ride on top of the hills, and only in Bridgeport is tunneling really necessary. Make it perhaps 5 km of required tunneling, all around Bridgeport. When I said $10 billion would build full-fat HSR on the NEC, I assumed $200-250 million per km for the Bridgeport tunnel. I also assumed $750 million for new tunnels in Baltimore, whose cost has since risen to $4 billion in part due to extra scope (4 tracks rather than 2). So 2 extra billions come from more expensive tunneling, and 278 extra billions come from bloated scope. Perhaps a subset of the 278 comes from high unit costs for systems and electrification, but these are not the main cost drivers, and are also quite easy to copy from peer developed countries. In the rest of this post, I will document some of the unnecessary scope. I emphasize that while Alternative 3 is the worst, the cost projection for Alternative 1, at $50 billion, is still several times the defensible cost of improvements.

Let us turn to chapter 4, the alternatives analysis, and start on PDF-p. 54. Right away, we see the following wasteful scope in Alternative 2:

  • Full four-tracking on the Providence Line, instead of strategic overtakes as detailed here.
  • A bypass of the Canton Viaduct, which at a radius of 1,746 meters imposes only a mild speed restriction on trains with E5 and Talgo tilt capability, 237 km/h.
  • An entirely new tunnel from Penn Station to Sunnyside, adding a third East River tunnel even though the LIRR is not at capacity now, let alone after East Side Access opens.
  • A tunnel under Philadelphia, so as to serve the city at Market East rather than 30th Street Station.
  • Two new HSR-dedicated tracks in New Jersey parallel to the NEC, rather than scheduling commuter trains on existing local tracks as detailed here.
  • Two new HSR-dedicated tracks alongside much of the New Haven Line, even in areas where the existing alignment is too too curvy.
  • Extensive tunneling between New Haven and Providence (see PDF-pp. 69-70 and 75), even in Alternative 1, even though HSR trains can climb the grades on the terrain without any tunnels outside the Providence built-up area if the tracks go west.

Alternative 2 also assumes service connecting New Haven, Hartford, and Providence, which I do not think is the optimal alignment (it’s slightly more expensive and slower), but is defensible, unlike the long proposed tunnels under Philadelphia, totaling around 30 km. The overall concept is also far more defensible than the tunnel-heavy implementation.

Alternative 3 adds the following unnecessary scope (see PDF-pp. 58 and 76-83):

  • Full six-tracking between New York and Philadelphia and between Baltimore and Washington.
  • Tunnel-heavy alignment options bypassing the New Haven Line, including inland options via Danbury or a tunnel across the Long Island Sound.
  • The new Baltimore tunnels are longer and include a new Baltimore CBD station, where the existing station is at the CBD’s periphery.
  • If I understand correctly, new platforms at New York Penn Station under the existing station.
  • Tunnels under the built-up area of Boston.

According to the cost breakdown, at-grade track costs $20 million per km, embankments cost $25 million per km, elevated track costs about $80 million per km, and tunnels cost $400 million per km. When I draw my preferred alignments, I assume the same cost elements, except tunnels are cheaper, at $200 million per km. (I also add 20% for overheads on top of these base costs, whereas these documents add contingency on top of that.) This should bias the NEC Future toward above-ground options.

Instead, look at the maps in appendix A. Alternative 3 is PDF-pp. 76-81. The options for getting out of the New York urban area include an almost entirely tunneled inland alignment, and a tunnel under the Long Island Sound; making small compromises on trip time by using the New Haven Line, and making up time elsewhere by using better rolling stock, is simply not an option to the planners.

Let’s go back to Gateway now. Although the cost premium there is not as outrageous as for NEC Future, it is a good case study in what the US will fund when it thinks the project is necessary and when there is sufficient lobbying. Paris has the political will to spend about $35 billion on Grand Paris Express, and London is spending $22 billion on Crossrail and is planning to spend much more on Crossrail 2. Between Second Avenue Subway, the 7 Extension, Fulton Street Transit Center, the PATH terminal, East Side Access, and now Gateway, New York is planning to have spent $43 billion on public transit by the middle of next decade. And now people are talking about Second Avenue Subway Phase 2. The political will to build both rapid transit and HSR in the US exists; the government spends tens of billions on it. But due to poor cost effectiveness, what the US gets for its money is almost nothing.

The $20 billion that the federal government and both states are willing to set on fire for Gateway prove that, were there a plan to build HSR so that trains would go between Boston and Washington in three and a half hours on a budget of $10-15 billion, it would be funded. This is not a marginal case, where the best plan still elicits groans from anti-tax conservatives: those conservatives ride trains between New York and Washington and want them to be faster. Instead, it is purely about excessive costs. Gateway’s $20 billion could build the tunnel and also full HSR on the NEC, and the $290 billion that NEC Future wants to burn on HSR could build nearly a complete national HSR network, serving most metro areas above 1 million people. It’s no longer a question of political will; it’s purely a question of cost control. 95% cost savings are possible here, and this is the only thing advocates for better intercity rail in the US should be focusing on.

LIRR Scheduling

The Long Island Railroad’s timetable is a mess. There is too little off-peak service, especially at the urban stations. At the peak, there is more service, but the service pattern is inscrutable. The Babylon Branch runs a skip-stop pattern in which trains make three stops, skip the next three, and then make the three after them. The pattern of which branch east of Jamaica is sent to which city terminal (Penn Station, Flatbush/Atlantic, or occasionally Hunterspoint) is inconsistent; passengers generally get timed cross-platform transfers at Jamaica, but the frequent interlacing of trains introduces a lot of dependency between different branches in the schedule, reducing reliability. Worst, the Main Line runs trains one-way, so for an hour in the peak, there is no off-peak service. As expected, reverse-peak ridership is minimal, even though there’s a fair number of jobs within a comfortable walk of Mineola. In this post, I am going to discuss how to improve the schedules.

The main tool I will use is a map of LIRR line speed zones. This was made by Patrick O’Hara, of the invaluable but now taken-offline blog The LIRR Today. I emphasize that Patrick does not endorse my plan to eliminate one-way service, on the grounds that it would unacceptably add to the travel time for conventional peak trips from Hicksville and points east to Penn Station. However, using the map and some data about rolling stock performance, I am going to show that LIRR schedules are so padded that improvements to reliability via simpler scheduling can reduce trip times significantly, more than making up for additional trip times to the elimination of most express runs.

First, let us compute technical trip times. In Boston, I compute these by looking at the acceleration rate of the FLIRT, but New York has passable rolling stock already, which means that modernization does not require full replacement of the fleet. This means we should use the specs of the M7: 13.9 kilowatts per ton (FLIRT: 21.7 maximum, 16.7 continuous), and an initial acceleration rate of 0.9 m/s^2 (FLIRT: 1.2). Assuming no air resistance, this means the theoretical acceleration penalty to 130 km/h, the speed over most of the electrified LIRR main lines, is 23 seconds. Judging by the difference between theoretical and actual FLIRT acceleration performance, the actual penalty is about 26 seconds. The deceleration penalty is 19 seconds, for a total of 45. Up to a speed of 100 km/h, the acceleration penalty is 17 seconds and the deceleration penalty is 13 seconds, for a total of 30.

Let us take dwell times to be 30 seconds. With reasonably wide doors at the quarter points and level boarding, it should not be difficult for the LIRR to hold to this standard. Actual dwells appear to be about 40-50 seconds, but are in the context of considerable schedule padding, as we will see. I am going to round speeds up from mph to km/h, so 80 mph will be rounded to 130 km/h, and 60 mph to 100 km/h; the numbers are close, and when I compute curve speeds, the total equivalent cant seems very low, such that large speed increases are possible. However, I am going to stick to the speed map, only changing to km/h for ease of calculation. Including dwell time, the stop penalty in 130 km/h territory is 75 seconds, and the stop penalty in 100 km/h territory is 60 seconds.

Of note, the actual stop penalties we see on LIRR schedules are larger, on the order of 100 seconds. Part of it is the padding again, but part of it is that LIRR trains do not accelerate as fast as they can; the LIRR derated its trains, limiting their acceleration to about 0.45 m/s^2 to reduce the electric current. This can and should be reversed. If it is not, the acceleration penalty is 40 seconds to 130 km/h and 31 seconds to 100 km/h, while the deceleration penalty, unaffected by the change to maximum acceleration, remains the same; overall, this slows trains by about 15 seconds per stop.

East of Jamaica, there are almost no slow zones on either the Main Line or the Babylon Branch. Hicksville’s 65 km/h zone slows trains that stop at Hicksville by about 30 seconds (even a few hundred meters from the station, trains could go faster if the line speed were higher). The curve between Bethpage and Farmingdale is worth 15 seconds. The slowdown in the interlocking at the junction with the Hempstead Line adds 5 seconds. The slowdowns in Jamaica add 35 seconds east of Jamaica, and 55 west of Jamaica, both for stopping trains. On the Babylon Branch, there are a few restrictions in the 80-110 km/h range, worth in total about 70 seconds; Babylon itself is in 100 km/h territory, adding another 10 seconds.

It is 63.6 km from Jamaica to Ronkonkoma. An express train from Jamaica to Ronkonkoma stopping only at Hicksville would do the trip in 33 minutes. A limited-stop train that stopped at Floral Park, Mineola, Hicksville, and then all stops to Ronkonkoma would do the trip in 44.5 minutes. A train that made every LIRR stop, even ones that Ronkonkoma trains never stop at today, would do it in 53 minutes. Under the current schedule, limited-stop trains, not stopping at Floral Park (with technical travel time of 43.5 minutes), do the trip in an hour, for a pad factor of 38%. After accounting for the fact that LIRR trains don’t accelerate this quickly because of the derating, we obtain a technical travel time of around 45.5 minutes, for a pad factor of 32%, still immense.

In Zurich, schedules are padded 7%. Rerating the trains to allow faster acceleration, and reducing the pad to 7%, would cut the trip time under the current off-peak stopping pattern from an hour to 47 minutes, which can be taken as either a material speed boost or as an opportunity to make more local stops. As I will argue later, trains should make more local stops – specifically, all from Floral Park east. This is five more stops than trains currently make; taking the 7% pad into account, we get 54 minutes, still a noticeable improvement over the current situation.

It is 17.4 km from Penn Station to Jamaica. Rather than detail the slow zones, I will just give the technical travel time, for a full-acceleration M7 making no intermediate stops: 13 minutes, or 14 with a 7% pad; 1 of those 13 minutes comes from the Penn Station throat and its 25 km/h speed limit, which is one of the reasons I have emphasized the need for simpler interlockings in station reconstruction. The schedule has 19 minutes, which is a 45% pad relative to full-acceleration travel time, and around 40% relative to the derated travel time. This is even worse, which I believe comes from a combination of congestion in the Penn Station area and the timed transfer at Jamaica; these mean that delays on one branch propagate to the others, requiring more slack in the schedule to maintain reliability. However, I will note that Zurich’s 7% pad is in the context of an environment with even more branches sharing a trunk line, and a plethora of timed transfers and overtakes.

It is 44.4 km from Jamaica to Babylon. An all-stop train – counting Saint Albans but not Atlantic Branch-only Rosedale and Valley Stream – would do the trip in 41 minutes. As I’ve argued years ago, the Babylon Branch’s stations all have relatively equal ridership, unlike the Main Line, where a few stations dominate, and therefore, we shouldn’t plan around express trains. The current schedule‘s travel time on all-stop off-peak trains is 53 minutes, a pad of 29% relative to full-acceleration performance and 19% relative to the derated performance. I believe the reason there is much less padding here than on the Ronkonkoma Branch is that the service pattern is simpler: off-peak, all trains make all stops, whereas the Main Line mixes skip-stop and express trains between the Ronkonkoma and Port Jefferson Branches. If all trains make the same stops and there are no overtakes, it’s easier to recover from delays, so there is less need for padding. (A similar principle is that you need less padding on double-track lines than on single-track lines.)

As mentioned before, at Swiss 7% padding, making all Main Line trains all-local from Floral Park east allows 54-minute service from Ronkonkoma to Jamaica. It also allows 69-minute service from Ronkonkoma to Penn Station, with a minute-long dwell at Jamaica. This is two minutes less than the fastest daily train on the current schedule, a nonstop that runs once a day and arrives at Penn Station at 7:30 am, before the greatest rush. Even at the Babylon Branch’s 19% padding, we get 60-minute service from Ronkonkoma to Jamaica and 76-minute service to Penn Station, which compares with 75 minutes for two peak trains with a few intermediate stops, and 82 minutes for off-peak trains with the above-mentioned pattern.

As for the Babylon Branch, going down to 7% padding and rerating the trains at higher speed means all-stop trains, including the three current local stops between Jamaica and Penn Station, would do the trip in 62 minutes. This is competitive with most peak trains: one train stopping only at Jamaica does the trip in 53 minutes, arriving at 7:02 am, but the other morning express trains, with pads varying based on how close to the peak of peak it is, do the trip in 62-65 minutes.

I claim that the solution to the problems of the Main Line is to indeed abolish all express runs. At the peak, there is no excuse for them: current traffic between the Ronkonkoma, Port Jefferson, and Oyster Bay Branches is about 23 trains per hour at the peak, and this means that either all peak-direction trains run local, or trains run one way, with local trains on one track and express trains on the other. The LIRR chooses to sacrifice reverse-peak service, because frankly providing a coherent network is not a priority; the priority is connecting peak-hour suburban travelers to Manhattan, and saving them a few minutes at any cost. This is despite the fact that peak travelers are the most expensive to serve – the peak is what drives capital investment, to say nothing of the crew utilization problems. But in this case, the peak-focused service may be self-defeating, as the above computation of pad ratios shows.

In the morning peak, west of Hicksville, the service pattern should thus be the same for every Ronkonkoma or Port Jefferson Branch train: all stops to Floral Park (where passengers could transfer to the Hempstead Branch), then express to Jamaica and then Penn Station. All trains should be as identical as possible, which means cutting the diesels to shuttles and, in the medium term, electrifying the Port Jefferson Branch to the end, since there is high ridership the entire way, whereas the Oyster Bay Branch and the Main Line beyond Ronkonkoma have low ridership. The dispatching should emphasize headway management rather than the schedule. Since all trains are functionally identical from Hicksville west, it does not matter to passengers if their favorite train left early – the next one will show up in at most 3 minutes. For the same reason, the transfer at Jamaica should not be timed at the peak.

The highest rapid transit capacity in the world is on subway lines that use headway management rather than fixed schedules, including the Moscow Metro and many modern driverless lines, where the limit is 39 tph. I do not expect 39 tph on the LIRR, but there is no demand for that on the Main Line right now; the point is to maintain 24 tph without excessive schedule padding. Off-peak, trains should keep a schedule because the frequency is lower, but the lower frequency is precisely what makes delays not propagate so fast; similarly, off-peak, the Jamaica transfer should be timed. The greatest problem is in the afternoon off-peak, but there, the bulk of boardings are at Penn Station, where delays are less likely since it’s the start of the line.

This pattern also suggests which capital investments the LIRR needs to make: it needs to construct interlockings such that there are no conflicts between Main Line trains and other trains. This means two things. First, grade-separating Queens Interlocking, between the Main Line and the Hempstead Branch, which currently has an at-grade conflict between opposing trains (eastbound Hempstead Branch, westbound Main Line). And second, reconstructing Jamaica’s access tracks from the east in a way that allows the Main Line from the east to continue on the Main Line’s express tracks to the west without interference from other lines. Right now, there’s an at-grade conflict with the Babylon Branch, but only in the same direction, which is less problematic.

This means kicking other branches off the express tracks from Jamaica to Penn Station, the most desirable track pair heading west of Jamaica. This is fine. Passengers on branches that connect to Flatbush, or to the local tracks to Penn Station, could still transfer cross-platform at Jamaica, even if at the peak the connecting train does not wait for them. Besides, as noted above, 7%-padded local trains from Babylon to Penn Station would have the same trip time as all but the single fastest express Babylon Branch train today.

Jamaica’s current track layout is 8 platform tracks, numbered 1-8, north to south. There are platforms between tracks 1-2, 2-3, 4-5, 6-7, and 7-8. This platform configuration allows three-way timed transfers: when a train platforms on track 2, passengers can walk from track 1 to track 3 via the train. Right now, to the west, the Atlantic Branch connects to tracks 3-6, and the four tracks of the Main Line each connects to two Jamaica tracks. But track connections exist to persistently connect tracks 2 and 7 to the express Main Line tracks, making 1 and 8 the local tracks and 3 and 6 the tracks to Flatbush. To the east, the Far Rockaway and Long Beach Branches connect to the Atlantic Branch without conflicting with other trains. Local Main Line tracks connect to tracks 1 and 8 without conflict. The only conflict involves the Babylon Branch, which runs in the middle between the eastbound and westbound Main Line tracks before diverging, and points at tracks 2 and 7. The current service pattern is that most Babylon Branch trains run express from Jamaica to Penn Station, making this track layout desirable. However, if they are switched to the local, single-track flyovers to connect them to tracks 1 and 8 are required, or alternatively a connection to tracks 3 and 6, which can be done without flyovers. In either case, three-way timed transfers would be retained, except at the peak.

Under my through-running proposal, the Atlantic Branch would continue to Lower Manhattan, so its demand would be much greater than today, encouraging a layout in which the Babylon Branch connected to tracks 3 and 6 and went to Brooklyn and Lower Manhattan. The Main Line trains would express to East Side Access and Grand Central, with an additional stop at Sunnyside Junction. The Hempstead Branch, connected to Penn Station and the Empire Connection, would have service increased, with mode-neutral fares encouraging more travel from within New York and Hempstead. I would also propose a new branch of the Hempstead Branch, using the inner Central Branch, going to the East Garden City job cluster. The Oyster Bay Branch would be electrified and its junction with the Main Line grade-separated.

However, I emphasize that none of my proposed schedule changes requires the intensive capital investment associated with connecting Flatbush with Lower Manhattan. Even East Side Access is not required. Queens Interlocking would be grade-separated, and the Oyster Bay Branch would be reduced to a shuttle with an additional track at Mineola (unless electrifying the entire line and grade-separating the junction is cheaper in the short run, which I doubt). Initially, I am not sure the at-grade conflict with the Babylon Branch on the approach to Jamaica would be deadly. The subway has a same-direction at-grade conflict at Rogers Avenue Junction, between the 2, 3, and 5 trains, whose combined peak frequency is higher than that of the Main Line and Babylon Branch’s. Rogers Avenue Junction is a key bottleneck on the numbered lines in New York, which is why the LIRR should not replicate it in the long run, but in the short run, it is fine.

To conclude, here are proposed westbound timetables for Ronkonkoma, Babylon, and Hempstead trains. These assume no new stations and only the minimally required physical infrastructure (that is, grade-separating Queens Interlocking).

Main Line:

Ronkonkoma 7:00
Central Islip 7:05
Brentwood 7:09
Deer Park 7:12
Wyandanch 7:16
Pinelawn 7:19
Farmingdale 7:23
Bethpage 7:27
Hicksville 7:31
Westbury 7:35
Carle Place 7:37
Mineola 7:40
Merillon Avenue 7:42
New Hyde Park 7:44
Floral Park 7:47
Jamaica 7:53
New York Penn 8:08

This is a total travel time of 68 minutes, and not 69 as advertised above. This is because of rounding artifacts.

Hempstead Branch:

Hempstead 7:31
Country Life Press 7:33
Garden City 7:36
Nassau Boulevard 7:38
Stewart Manor 7:40
Floral Park 7:43
Bellerose 7:34
Queens Village 7:46
Hollis 7:49
Jamaica 7:53
Kew Gardens 7:57
Forest Hills 7:59
Woodside 8:04
New York Penn 8:12

The 4-minute difference between local and express travel time between Jamaica and Penn Station comes from the fact that the intermediate stations are for the most part in slower zones than 130 – only at Forest Hills is there enough of a distance to get up to 130, and only west of the station, not east. Erratum: although it is true the stations are in slow zones, I wrote this paragraph thinking there are four intermediate stations, where of course there are only three; 4/3 = 80 seconds per stop, which comes from rounding artifacts.

The Hempstead Branch has a 1.5-km single-track segment starting west of Hempstead and ending east of Garden City. It is quite slow; the 25 km/h curve just north (west) of Country Life Press has geometry good enough for 50 km/h without any superelevation (cant deficiency would be 150 mm), and with 150 mm superelevation would be good for 70. Replacing that entire 25-50 km/h segment with 70 km/h saves about a minute of travel time.

Babylon Branch:

Babylon 7:04
Lindenhurst 7:08
Copiague 7:10
Amityville 7:12
Massapequa Park 7:15
Massapequa 7:17
Seaford 7:19
Wantagh 7:21
Bellmore 7:24
Merrick 7:26
Freeport 7:29
Baldwin 7:31
Rockville Centre 7:34
Lynbrook 7:37
St. Albans 7:43
Jamaica 7:48
Kew Gardens 7:52
Forest Hills 7:54
Woodside 7:59
New York Penn 8:07

I arbitrarily chose the Ronkonkoma departure time to be 7:00, and then chose the Hempstead Branch schedule to allow a timed transfer at Jamaica. The five-minute offset for the Babylon Branch should be suggestive of the proposed frequency: off-peak, every ten minutes on the Babylon Branch (possibly every twenty but also every twenty on the West Hempstead Branch), every ten minutes on the Hempstead Branch (possibly every twenty but also every twenty on the Central Branch to East Garden City), and every ten minutes on the Main Line, with each of the Ronkonkoma and Port Jefferson Branches getting a train every twenty minutes. The Atlantic Branch trains should run every twenty minutes per branch, with a three-way timed transfer with the Main Line and Hempstead Branch. Off-peak, the Babylon Branch doesn’t transfer to anything else, so there is no need to worry about its at-grade conflict at Jamaica.

Amtrak Pays More Than Double for High-Speed Trains

Update 2016/8/16: the deal is on, per sources at Amtrak; the cost is $2.5 billion, as reported originally.

Update 9/24: as Alex Block notes in comments, sources at Amtrak deny the story, saying that Schumer spoke too soon, and there are still two bidders and Amtrak has not yet made its choice. If the cost turns out to be $1-1.25 billion rather than $2.5 billion, I will withdraw any and all criticism of the procurement process.

A press release from Senator Charles Schumer’s office is abuzz: Amtrak chose Alstom’s bid for its next order of high-speed trainsets, the Next-Generation Acelas. The press release mentions the size of the contract, $2.5 billion, and the number of jobs it would create, 750; it did not include any information relevant to passengers, such as the number of trains, the expected schedule of delivery, the expected frequency, and the expected travel time. Various media outlets have reprinted Schumer’s press release without such additional information, or indeed any analysis. Let me rectify this and provide some background as to why this order is a fleece.

The order is for 28 trainsets with 425 seats each. This can be seen here and here. Of those 28 sets, 25 should be available for maximum service, well below the 98% peak availability achieved by the TGV, but an improvement over the Acela’s current 16 trains available out of 20. There is no mention of the number of cars, which is how orders are usually priced. However, on page 30 of the technical specs, it is mentioned that the maximum length is 200 meters, equivalent to 8 cars. The capacity is equivalent to about six cars’ worth of seating at the normal seat density of economy-class HSR (including the Amtrak Regional coach), or about seven cars’ worth averaged over all occupied Acela cars. The RFP mentions half a bistro car with an option for a full car (page 21 of instructions to offerors), so eight cars per train is a reasonable assumption. I have seen references to ten cars per set, which I believe come from the option for two additional cars per train (the instructions phrase this as “an extra 33.33% capacity”). From Schumer’s press release it’s difficult to know whether the $2.5 billion figure is the base order or also the option.

Eight cars per train times 28 trains equals 224 cars. $2.5 billion divided by 224 equals $11.2 million per car; if I am wrong and these are ten-car trains, then it is $8.9 million per car. In China, a very high-speed train, capable of 350-380 km/h, costs $4 million per car; this is $900 million at the size of Amtrak’s order. In Europe, the new Eurostar order cost a total of €600-700 million for ten 16-car Velaro trainsets, about $4.7-5.5 million per car in PPP terms (see here and here); the uncertainty comes from euro:pound conversion rates and from the fact that a portion of the order is for refurbishment of the older trainsets. Siemens also sold 8-car Velaros to Deutsche Bahn for $5.2 million per car, again in PPP terms. Japanese trains are even cheaper, about $3 million per car in a recent N700 order, but only last 20 years, whereas European HSR trainsets last 40 and Amtrak specified a 30-year shelf life. The only non-US trainset order that I’ve seen that approaches the $10 million per car mark is the Velaro RUS, which is €600 million for eight 10-car trains, and this includes substantial modifications, such as winterization.

There is no excuse for such high costs. The technical specs are not particularly innovative: on page 22 of the document linked above, it is mentioned that cant deficiency should be 127 mm if the trains don’t tilt and 229 if they do, both of which figures are unimpressive by the respective standards of non-tilting and tilting trains. There is no explicit requirement for tilt. There is a requirement that trains be capable of traveling between New York and Washington in 2:21 (current trip time is 2:48) and between New Haven and Boston in 1:51 (current trip time is about 2 hours, skipping New London, which the specs require trains to stop at); there is no mention of which track upgrades are forthcoming, but given Amtrak’s heavy schedule padding, it is not difficult for a good train to meet the requirements. I do not bring these specs up to attack Amtrak for not demanding more of the trains, but to note that what Amtrak is asking is standard, so there is no reason for trains to be unusually expensive.

I will note that due to Buy America provisions, the trains will be manufactured in the US, at Alstom’s factory in Hornell. This has not caused cost blowouts for the large orders made by the New York subway, the LIRR, and Metro-North, but perhaps this order is small enough that requiring Alstom to build it at a new factory leads to major cost increases. It is also possible that due to difficulties in the bidding process, there are fewer bidders than is normal – Bombardier dropped out of the process last year, and in general, some US contracts have just one bid, with correspondingly elevated prices. But regardless of the reason, Amtrak’s order comes at a factor-of-two cost premium, and Schumer just expressed pride at the few hundred jobs that this waste would create.