Category: Regional Rail

Greenbelts Help Cars

A number of major cities, most notably London, have designated areas around their built-up areas as green belts, in which development is restricted, in an attempt to curb urban sprawl. The towns within the green belt are not permitted to grow as much as they would in an unrestricted setting, where the built-up areas would merge into a large contiguous urban area. Seeking access to jobs in the urban core, many commuters instead live beyond the greenbelt and commute over long distances. There has been some this policy’s effect on housing prices, for example in Ottawa and in London by YIMBY. In the US, this policy is less common than in Britain and Canada, but exists in Oregon in the form of the urban growth boundaries (UGBs), especially around Portland. The effect has been the same, replacing a continuous sprawling of the urban area with discontinuous suburbanization into many towns; the discontinuous form is also common in Israel and the Netherlands. In this post, I would like to explain how, independently of issues regarding sprawl, such policies are friendlier to drivers than to rail users.

Let us start by considering what affects the average speed of cars and what affects that of public transit. On a well-maintained freeway without traffic, a car can easily maintain 130 km/h, and good cars can do 160 or more on some stretches. In urban areas, these speeds are rarely achievable during the day; even moderate traffic makes it hard to go much beyond 110 or 120. Peak-direction commutes are invariably slower. Moreover, when the car gets off the freeway and onto at-grade arterial roads, the speed drops further, to perhaps 50 or less, depending on density and congestion.

Trains are less affected by congestion. On a well-maintained, straight line, a regional train can go at 160 km/h, or even 200 km/h for some rolling stock, even if headways are short. The busiest lines are typically much slower, but for different reasons: high regional and local traffic usually comes from high population density, which encourages short stop spacing, such that there may not be much opportunity for the train to go quickly. If the route is curvy, then high density also makes it more difficult to straighten the line by acquiring land on the inside of the curves. But by and large, slowdowns on trains come from the need to make station stops, rather than from additional traffic.

Let us now look at greenbelts of two kinds. In the first kind, there is legacy development within the greenbelt, as is common around London. See this example:



The greenbelt is naturally in green, the cities are the light blue circles with the large central one representing the big city, and the major transportation arteries (rail + freeway) are in black. The towns within the greenbelt are all small, because they formed along rail stops before mass motorization; the freeways were built along the preexisting transportation corridors. With mass motorization and suburbanization, more development formed right outside the greenbelt, this time consisting of towns of a variety of sizes, typically clustering near the freeways and railways for best access to the center.

The freeways in this example metro area are unlikely to be very congested. Their congestion comes from commuters into the city, and those are clustered outside the greenbelt, where development is less restricted. Freeways are widened based on the need to maintain a certain level of congestion, and in this case, this means relatively unimpeded traffic from the outside of the green belt right up until the road enters the big city. Under free development, there would be more suburbs closer to the city, and the freeway would be more congested there; travel times from outside the greenbelt would be longer, but more people would live closer to the center, so it would be a wash.

In contrast, the trains are still going to be slowed down by the intermediate stops. The small grandfathered suburbs have no chance of generating the rail traffic of larger suburbs or of in-city stops, but they still typically generate enough that shutting them down to speed traffic is unjustified, to say nothing of politically impossible. (House prices in the greenbelt are likely to be very high because of the tight restrictions, so the commuters there are rich people with clout.) What’s more, frequency is unlikely to be high, since demand from within the greenbelt is so weak. Under free development, there might still be more stops, but not very many – the additional traffic generated by more development in those suburbs would just lead to more ridership per stop, supporting higher frequency and thus making the service better rather than worse.

Let us now look at another greenbelt, without grandfathered suburbs, which is more common in Canada. This is the same map as before, with the in-greenbelt suburbs removed:


In theory, this suburban paradigm lets both trains and cars cruise through the unbuilt area. Overall commutes are longer because of the considerable extra distance traveled, but this distance is traversed at high speed by any mode; 120 km/h is eminently achievable.

In practice, why would there be a modern commuter line on any of these arteries? Commuter rail modernization is historically a piecemeal program, proceeding line by line, prioritizing the highest-trafficked corridors. In Paris, the first commuter line to be turned over to the Metro for operation compatible with city transit, the Ligne de Sceaux, has continuous urban development for nearly its entire length; a lightly-trafficked outer edge was abandoned shortly after the rest of the line was electrified in 1938. If the greenbelt was set up before there was significant suburbanization in the restricted area, it is unlikely that there would have been any reason to invest in a regional rail line; at most there may be a strong intercity line, but then retrofitting it to include slower regional traffic is expensive. Nor is there any case for extending a high-performing urban transit line to or beyond a greenbelt. Parts of Grand Paris Express, namely Lines 14 and 11, are extended from city center outward. In contrast, in London, where the greenbelt reduces density in the suburbs, high investment into regional rail focuses on constructing city-center tunnels in Crossrail and Crossrail 2 and connecting legacy lines to them. In cities that do not even have the amount of suburban development of the counties surrounding London, there is even less justification for constructing new transit.

Now, you may ask, if there’s no demand for new urban transit lines, why is there demand for new highways? After all, if there was not much regional travel into these suburbs historically, why would there be enough car traffic to justify high investment into roads? The answer is that at low levels of traffic, it’s much cheaper to build a road than to build and operate a railway. This example city has no traffic generators in the greenbelt, except perhaps parks, so roads are cheap to build and have few to no grade crossings to begin with, making it easier to turn them into full freeways. The now-dead blog Keep Houston Houston made this point regarding a freeway in Portland, which was originally built as an arterial road in a narrow valley and had few at-grade intersections to be removed. At high levels of demand, the ability to move the same number of people on two tracks as on fourteen lanes of freeway makes transit much more efficient, but at low demand levels, rail still needs two tracks or at least one with passing sidings, and high-speed roads need four lanes and in some cases only two.

The overall picture in which transit has an advantage over cars at high levels of density is why high levels of low-density sprawl are correlated with low transit usage. But I stress that even independently of sprawl, greenbelts are good for cars and bad for transit. A greenbelt with legacy railway suburbs is going to feature trains going at the normal speed of a major metro area, and cars going at the speed of a more spread out and less populated region. Even a greenbelt without development is good urban geography for cars and bad one for transit.

As a single exception, consider what happens when a greenbelt is reserved between two major nodes. In that specific case, an intercity line can more easily be repurposed for commuting purposes. The Providence Line is a good example: while there’s no formal greenbelt, tight zoning restrictions in New England even in the suburbs lead to very low density between Boston and Providence, which is nonetheless served by good infrastructure thanks to the strength of intercity rail travel. The MBTA does not make good use of this infrastructure, but that’s beside the point: there’s already a high-speed electrified commuter line between the two cities, with widely spaced intermediate stops allowing for high average speeds even on stopping trains and overtakes that are not too onerous; see posts of mine here and here. What’s more, intercity trains can be and are used for commutes from Providence to Boston. For an analogous example with a true greenbelt, Milton Keynes plays a role similar to Providence to London’s Boston.

However, this exception is uncommon. There aren’t enough Milton Keyneses on the main intercity lines to London, or Providences on the MBTA, to make it possible for enough transit users to suburbanize. In cities with contiguous urban development, such as Paris, it’s easier. The result of a greenbelt is that people who do not live in the constrained urban core are compelled to drive and have poor public transportation options. Once they drive, they have an incentive to use the car for more trips, creating more sprawl. This way, the greenbelt, a policy that is intended to curb sprawl and protect the environment, produces the exact opposite results: more driving, more long-distance commuting, a larger urban footprint far from the core.

Train Operator Labor Efficiency

Last summer, I brought up a metric of railroad labor efficiency: annual revenue hours per train driver. Higher numbers mean that train drivers spend a larger proportion of their work schedule driving a revenue train rather than deadheading, driving a non-revenue train, or waiting for their next assignment. As an example, I am told on social media that the LIRR schedules generous crew turnaround times, because the trains aren’t reliably punctual, and by union rules, train drivers get overtime if because their train is late they miss the next shift. Of note, all countries in this post have roughly the same average working hours (and the US has by a small margin the highest), except for France, which means that significant differences in revenue hours per driver are about efficiency rather than overall working hours.

I want to clarify that even when union work rules reduce productivity, low productivity does not equal laziness. Low-frequency lines require longer turnaround times, unless they’re extremely punctual. Peakier lines require more use of split shifts, which require giving workers more time to commute in and out.

The database is smaller than in my posts about construction costs, because it is much harder to find information about how many train operators a subway system or commuter railroad employs than to find information about construction costs. It is often also nontrivial to find information about revenue hours, but those can be estimated from schedules given enough grunt work.

In Helsinki, there is a single subway trunk splitting into two branches, each running one train every 10 minutes all day, every day: see schedules here and here. This works out to 65,000 train-hours a year. There are 75 train drivers according to a 2010 factsheet. 65,000/75 = 867 hours per driver. This is the highest number on this list, and of note, this is on a system without any supplemental peak service, allowing relatively painless scheduling.

In Toronto, there were 80,846,000 revenue car-km on the subway in 2014 (an additional line, the Scarborough Rapid Transit, is driverless). Nearly all subway trains in Toronto have six cars; the Sheppard Line runs four-car trains, but is about 10% of the total route-length and runs lower frequency than the other lines. So this is around 13.5 million revenue train-km. According to both Toronto’s schedule of first and last trains per station and this chart of travel times, average train speed is around 32 km/h between the two main lines, and a bit higher on Sheppard, giving about 420,000 annual service hours. In 2009, there were 393,000 hours. Toronto runs two-person train operation, with an operator (driver) and a guard (conductor); this article from 2014 claims 612 operators and guards, this article from 2009 claims 500 operators alone. 420,000/500 = 840, and, using statistics from 2009, we get 393,000/500 = 786; if the article from 2014 misrepresents things and there are 612 drivers in total, then 420,000/612 = 686. If I had to pick a headline figure, I’d use 786 hours per driver, using the 2009 numbers. Update: the Scarborough RT is not driverless, even though the system could be run driverless; from the same data sources as for the subway, it had 23,000 operating hours in 2014, which adds a few percent to the operating hours per driver statistic.

In London, unlike in North America, the statistics are reported in train-km and not car-km. There are 76.2 million train-km a year, and average train speed is 33 km/h, according to a TfL factsheet; see also PDF-p. 7 of the 2013-4 annual report. In 2012, the last year for which there is actual rather than predicted data, there were 3,193 train drivers, and according to the annual report there were 76 million train-km. 76,000,000/33 = 2,300,000 revenue-hours; 2,300,000/3,193 = 721 hours per driver.

In Tokyo, there used to be publicly available information about the number of employees in each category, at least on Toei, the smaller and less efficient of the city’s two subway systems. As of about 2011, Toei had 700 hours per driver: from Hyperdia‘s schedules, I computed about 390,000 revenue train-hours per year, and as I recall there were 560 drivers, excluding conductors (half of Toei’s lines have conductors, half don’t).

In New York, we can get revenue car-hour statistics from the National Transit Database, which is current as of 2013; the subway is on PDF-p. 13, Metro-North is on PDF-p. 15, and the LIRR is on PDF-p. 18. We can also get payroll numbers from SeeThroughNY. The subway gets 19,000,000 revenue hours per year; most trains have ten cars, but a substantial minority have eight, and a smaller minority have eleven, so figure 2,000,000 train-hours. There were 3,221 train operators on revenue vehicles in 2013, and another 373 at yards. This is 556 hours per driver if the comparable international figure is all drivers, or 621 if it is just revenue vehicle drivers. The LIRR gets 2,100,000 annual revenue car-hours, and usually runs trains of 8 to 12 cars; figure around 210,000. There were 467 engineers on the LIRR in 2013; this is 450 hours per driver. Metro-North gets 1,950,000 annual revenue car-hours, and usually runs 8-car trains; figure about 240,000. It had 413 locomotive engineers in 2013; this is 591 hours per driver.

In Paris, the RER A has 523 train drivers (“conducteurs”). The linked article attacks the short working hours, on average just 2:50 per workday. The timetable is complex, but after adding the travel time for each train, I arrived at a figure of 230,000 train-hours a year. 230,000/523 = 440 hours per driver. There’s a fudge factor, in that the article is from 2009 whereas the timetable is current, but the RER A is at capacity, so it’s unlikely there have been large changes. Note also that in France, workers get six weeks of paid vacation a year, and a full-time workweek is 35 hours rather than 40; adjusting for national working hours makes this equivalent to 534 hours in the US, about the same as the New York subway.

Why Costs Matter

Stockholm is currently expanding its transit system, with about 19 kilometers of subway extension, and another 6 kilometers of a commuter rail tunnel taking regional traffic off the at-capacity mainline. The subway extension, excluding rolling stock acquisition, costs about $2.1 billion, and the commuter rail extension $1.8 billion.

The US is currently building five subways: Second Avenue Subway Phase 1 (2.8 km, $4.6 billion), East Side Access (2.2 km, $10 billion), the first phase of the Wilshire subway (6.3 km, $2.8 billion), the Regional Connector (3.1 km, $1.4 billion), U-Link (5 km, $1.8 billion). Two more projects are partially underground: the Crenshaw/LAX Line, a total of 13.7 km of which 4.7 are underground, at a total cost of $2.1 billion, and the Warm Springs BART extension, a total of 8.6 km of which 1.6 are underground, at a total cost of $900 million. (Update 2/1: the Central Subway is $1.6 billion for 2.8 km. Thanks to Joel for pointing out that I forgot about it.)

The first observation is that Sweden has just 700 meters 3.5 km of subway under construction less than the US under construction, despite a vast gap in not only population but also current transit usage. Stockholm may have twice the per capita rail ridership of New York, but it’s still a small city, the size of Indianapolis, Baltimore, Portland, or Charlotte; 450 million annual rail trips is impressive for a city of its size, but the US combined has more than 3 billion. This relates to differences in costs: the amount of money Sweden is putting into heavy rail infrastructure is $3.9 billion, vs. $23.6 billion $25.2 billion among the seven eight US projects, which approaches the ratio of national subway and commuter rail ridership levels.

The second observation is that the US spending is not really proportional to current rail ridership. Two thirds of the spending is in New York, as is two thirds of US rail ridership, but nearly everything else is in Los Angeles, which takes in a majority of current subway construction route-length. Los Angeles is a progressive city and wants better public transit, but the same is true in many of the six major US transit cities – New York, Washington, San Francisco, Chicago, Boston, and Philadelphia. And yet, of those six, only New York and San Francisco are building urban subways (BART’s one mile of tunnel is in a suburb, under a park).

The difference is that Los Angeles builds subways at $400-450 million per km in the city core (less in future phases of the Wilshire subway), whereas in most of the US, lines are either more expensive or more peripheral. Boston, the Bay Area, and Washington are expanding their rapid transit networks, but largely above-ground or in a trench, and only outside the core. Boston’s Green Line Extension is in a trench, but has had major budget overruns and is currently on the high side for a full subway ($3 billion for 6.9 km), and the MBTA is even putting canceling the project on the table due to the cost. Washington’s Silver Line Phase 2 is 18.5 km and $2.7 billion, in a highway median through the Northern Virginia suburbs. BART’s Warm Springs extension is about $100 million per km, which is not outrageously high, but the next extension of the line south, to Berryessa, is $2.3 billion for 16 km, all above ground.

Let us now stay on the North American West Coast, but go north, to Vancouver. Vancouver’s construction costs are reasonable: the cost projections for the Broadway subway (C$2.7 billion ex-vehicles, PDF-p. 95) are acceptable relative to route-length (12.4 km, PDF-p. 62) and very good relative to projected ridership (320,000 per weekday, PDF-p. 168). Judging by the costs of the Evergreen and Canada Lines, and the ridership evolution of the Canada Line, these projections seem realistic. And yet, in a May 2015 referendum about funding half the line as well as many other transit projects, 62% of the region’s voters, including a bare majority in Vancouver proper, voted no.

The referendum’s result was not a shock. In the few months before the vote, the polls predicted a large, growing no vote. Already in February, the Tyee was already comparing Vancouver negatively with Stockholm, and noting that TransLink’s regional governance structure was unusual, saying the referendum was designed to fail. This is not 100% accurate: in 2014, polls were giving the yes side a majority. The deterioration began around the end of 2014 or beginning of 2015: from 52-39 in December to 46-42 in January, to 27-61 in March. The top reason cited by no voters was that they didn’t trust TransLink to spend the money well.

This cannot be divorced from Vancouver’s Compass Card debacle: plans to replace paper tickets and SkyTrain’s proof-of-payment system with a regionwide smartcard, called Compass, and faregates on SkyTrain, were delayed and run over budget. The faregates aren’t even saving money, since TransLink has to pay an operating fee to vendor Cubic that’s higher than the estimated savings from reduced fare evasion. The height of the scandal was in 2014, but it exploded in early 2015, when TransLink replaced its manager amidst growing criticism. The referendum would probably have been a success a year earlier; it was scheduled in what turned out to be a bad period for TransLink.

The importance of the Vancouver example is that construction costs are not everything. Transit agencies need to get a lot of things right, and in some cases, the effects are quite random. (Los Angeles, too, had a difficult rollout of a Cubic-run faregate system.) The three key principles here are, then:

1. Absolute costs matter. They may not directly affect people’s perceptions of whether construction is too expensive. But when legislators have to find money for a new public transit project, they have some intuitive idea of its benefits, give or take a factor of perhaps 2. Gateway is being funded, even though with the latest cost overrun (to $23.9 billion) the benefit-cost ratio in my estimation is about 1/3, but this involved extensive lobbying by Amtrak, lying both to Congress and to itself that it is a necessary component of high-speed rail. Ordinary subways do not have the luxury of benefiting from agency imperialism the way the Gateway project did; if they’re too expensive, they’re at risk of cancellation.

2. Averaged across cities and a number of years of construction, cities and countries with lower construction costs will build more public transit. We see this in the US vs. Sweden. Of course, there are periods of more construction, such as now, and periods of less, such as around 2000, but this affects both countries right now.

3. Variations from the average are often about other issues of competence – in Vancouver’s case, the failure of the faregates and the delayed Compass rollout. Political causes are less important: Vancouver’s business community opposed the transit referendum and organized against it, but it’s telling that it did so and succeeded, whereas business communities in cities with more popular transit authorities support additional construction.

In a post from 2011, Yonah Freemark argued that California HSR’s projected cost’s upper end was just 0.18% of the projected GDP of California over a 20-year construction period. The implication: the cost of high-speed rail (and public transit in general) is small relative to the ability of the economy to pay. This must be paired with the sobering observation that the benefits of public transit are similarly small, or at most of the same order of magnitude.

New York’s survived decades without Second Avenue Subway. It’s a good project to have, provided the costs are commensurate with the benefits, but without cost containment, phase 2 is probably too expensive, and phases 3 and 4 almost certainly. What’s more, the people funding such projects – the politicians, the voters, even the community organizations – consider them nice-to-haves. The US has no formal mechanism of estimating benefit-cost ratios, and a lot of local political dysfunction, and this can distort the funding, to the point that Gateway is being funded even though at this cost it shouldn’t. But, first, even a factor of 3 distortion is unusual, and second, on average, these distortions cancel out. Democrats and Republicans shouldn’t plan on controlling either Congress or the White House more than about half the time, in the long run, and transit activists shouldn’t plan on political dysfunction persistently working in their favor.

The only route forward is to improve the benefit-cost ratio. On the benefit side, this means aggressive upzoning around subway stations, probably the biggest lacuna in Los Angeles’s transit construction program. But in New York, and even in the next five transit cities in the US, this is not the main problem: population density on many corridors is sufficient by the standards of such European transit cities as Stockholm, Berlin, London, and Munich, none of which is extraordinarily dense like Paris.

No: the main problem in most big US cities is costs, and almost only costs. Operating costs, to some extent, but mainly capital construction costs. Congress and the affected states apparently have enough political will to build a 5-km tunnel for $20 billion going on $24 billion; if this system could be built for $15 billion, they’d jump at the opportunity to take credit. The US already has the will to spend reasonable amounts of money on public transit. The difference is that its $24 billion $25 billion of spending on subways buys 26 km 28.5 km of subway and 16 km of a mix of light rail and el, where it could be buying 120 km 125 km of subway. Work out where you’d build the extra 94 km 96.5 km and ask yourself if ignoring costs is such a good idea for transit activists.

When There’s Nothing Left To Burn, You Have To Set Money On Fire

Two recent news items have driven home the point that American construction costs are out of control. The first is the agreement between the federal government and the states of New York and New Jersey to fund the Gateway project, at a cost of $20 billion. The second is the release of more detailed environmental impact studies for high-speed rail on the Northeast Corridor; I previously expressed tepidly positive sentiment toward the NEC Future concept, but now there are concrete cost projections: the only full HSR option, Alternative 3, is projected to cost $290 billion. As Stephen Smith noted on Twitter, Alternative 3 is twice as expensive per km as the mostly underground Chuo Shinkansen maglev. As such, I am going to ignore other issues in this post, such as whether to serve Hartford on the mainline or not: they are real issues, but are secondary concerns to the outrageous cost figures.

Although both Gateway and NEC Future have extreme costs – too high for me to be able to support either project – the causes of those high costs are different. Gateway includes not just a new tunnel across the Hudson but also substantial unnecessary scope in Penn Station South; however, I suspect that even if the scope is pared down to the minimum required to provide four tracks from Newark to New York, the budget would still be very high. The bare Gateway tunnel (including Penn South) is to my understanding $14-16 billion; the maximum cost that can be justified by the extra ridership, unless additional operating improvements (which can be done today) are in place, is about $7 billion. As with Second Avenue Subway, there is a real problem of high unit costs. I emphasize that there is too much scope in Gateway, but the scope alone cannot explain why 5 km of tunnel cost many billions, when expensive non-US projects such as Crossrail top at a billion dollars per km and the geologically more complex Marmaray tunnel cost (in PPP terms) about $400 million per km.

The situation with NEC Future is different, in two ways. First, if Gateway cuts a zero from the budget, I will consider it a solid project, perhaps even an inexpensive one given the wide river crossing. (For reference, in 2003 the projected cost was $3 billion). In contrast, if NEC Future cuts a zero from its budget, I will still consider it too expensive – perhaps worth it because of the benefits of HSR, but certainly too high to be built without further inquiry. $29 billion for 720 km is justified for a line with a fair amount of tunneling and entirely greenfield construction, whereas the NEC has long segments that are already nearly ready for HSR and requires very little tunneling.

But second, and more importantly, NEC Future’s unit costs are not high. Read appendix B.06, which discusses cost: on PDF-p. 28 it breaks down cost by item, and other than the tunnels, which at $400-500 million per km are several times as expensive as intercity rail tunnels usually are, the infrastructure items’ per-km costs are reasonable. And the NEC doesn’t require much tunneling in the first place: Connecticut may be hilly, but HSR can climb 3.5% grades and ride on top of the hills, and only in Bridgeport is tunneling really necessary. Make it perhaps 5 km of required tunneling, all around Bridgeport. When I said $10 billion would build full-fat HSR on the NEC, I assumed $200-250 million per km for the Bridgeport tunnel. I also assumed $750 million for new tunnels in Baltimore, whose cost has since risen to $4 billion in part due to extra scope (4 tracks rather than 2). So 2 extra billions come from more expensive tunneling, and 278 extra billions come from bloated scope. Perhaps a subset of the 278 comes from high unit costs for systems and electrification, but these are not the main cost drivers, and are also quite easy to copy from peer developed countries. In the rest of this post, I will document some of the unnecessary scope. I emphasize that while Alternative 3 is the worst, the cost projection for Alternative 1, at $50 billion, is still several times the defensible cost of improvements.

Let us turn to chapter 4, the alternatives analysis, and start on PDF-p. 54. Right away, we see the following wasteful scope in Alternative 2:

  • Full four-tracking on the Providence Line, instead of strategic overtakes as detailed here.
  • A bypass of the Canton Viaduct, which at a radius of 1,746 meters imposes only a mild speed restriction on trains with E5 and Talgo tilt capability, 237 km/h.
  • An entirely new tunnel from Penn Station to Sunnyside, adding a third East River tunnel even though the LIRR is not at capacity now, let alone after East Side Access opens.
  • A tunnel under Philadelphia, so as to serve the city at Market East rather than 30th Street Station.
  • Two new HSR-dedicated tracks in New Jersey parallel to the NEC, rather than scheduling commuter trains on existing local tracks as detailed here.
  • Two new HSR-dedicated tracks alongside much of the New Haven Line, even in areas where the existing alignment is too too curvy.
  • Extensive tunneling between New Haven and Providence (see PDF-pp. 69-70 and 75), even in Alternative 1, even though HSR trains can climb the grades on the terrain without any tunnels outside the Providence built-up area if the tracks go west.

Alternative 2 also assumes service connecting New Haven, Hartford, and Providence, which I do not think is the optimal alignment (it’s slightly more expensive and slower), but is defensible, unlike the long proposed tunnels under Philadelphia, totaling around 30 km. The overall concept is also far more defensible than the tunnel-heavy implementation.

Alternative 3 adds the following unnecessary scope (see PDF-pp. 58 and 76-83):

  • Full six-tracking between New York and Philadelphia and between Baltimore and Washington.
  • Tunnel-heavy alignment options bypassing the New Haven Line, including inland options via Danbury or a tunnel across the Long Island Sound.
  • The new Baltimore tunnels are longer and include a new Baltimore CBD station, where the existing station is at the CBD’s periphery.
  • If I understand correctly, new platforms at New York Penn Station under the existing station.
  • Tunnels under the built-up area of Boston.

According to the cost breakdown, at-grade track costs $20 million per km, embankments cost $25 million per km, elevated track costs about $80 million per km, and tunnels cost $400 million per km. When I draw my preferred alignments, I assume the same cost elements, except tunnels are cheaper, at $200 million per km. (I also add 20% for overheads on top of these base costs, whereas these documents add contingency on top of that.) This should bias the NEC Future toward above-ground options.

Instead, look at the maps in appendix A. Alternative 3 is PDF-pp. 76-81. The options for getting out of the New York urban area include an almost entirely tunneled inland alignment, and a tunnel under the Long Island Sound; making small compromises on trip time by using the New Haven Line, and making up time elsewhere by using better rolling stock, is simply not an option to the planners.

Let’s go back to Gateway now. Although the cost premium there is not as outrageous as for NEC Future, it is a good case study in what the US will fund when it thinks the project is necessary and when there is sufficient lobbying. Paris has the political will to spend about $35 billion on Grand Paris Express, and London is spending $22 billion on Crossrail and is planning to spend much more on Crossrail 2. Between Second Avenue Subway, the 7 Extension, Fulton Street Transit Center, the PATH terminal, East Side Access, and now Gateway, New York is planning to have spent $43 billion on public transit by the middle of next decade. And now people are talking about Second Avenue Subway Phase 2. The political will to build both rapid transit and HSR in the US exists; the government spends tens of billions on it. But due to poor cost effectiveness, what the US gets for its money is almost nothing.

The $20 billion that the federal government and both states are willing to set on fire for Gateway prove that, were there a plan to build HSR so that trains would go between Boston and Washington in three and a half hours on a budget of $10-15 billion, it would be funded. This is not a marginal case, where the best plan still elicits groans from anti-tax conservatives: those conservatives ride trains between New York and Washington and want them to be faster. Instead, it is purely about excessive costs. Gateway’s $20 billion could build the tunnel and also full HSR on the NEC, and the $290 billion that NEC Future wants to burn on HSR could build nearly a complete national HSR network, serving most metro areas above 1 million people. It’s no longer a question of political will; it’s purely a question of cost control. 95% cost savings are possible here, and this is the only thing advocates for better intercity rail in the US should be focusing on.

LIRR Scheduling

The Long Island Railroad’s timetable is a mess. There is too little off-peak service, especially at the urban stations. At the peak, there is more service, but the service pattern is inscrutable. The Babylon Branch runs a skip-stop pattern in which trains make three stops, skip the next three, and then make the three after them. The pattern of which branch east of Jamaica is sent to which city terminal (Penn Station, Flatbush/Atlantic, or occasionally Hunterspoint) is inconsistent; passengers generally get timed cross-platform transfers at Jamaica, but the frequent interlacing of trains introduces a lot of dependency between different branches in the schedule, reducing reliability. Worst, the Main Line runs trains one-way, so for an hour in the peak, there is no off-peak service. As expected, reverse-peak ridership is minimal, even though there’s a fair number of jobs within a comfortable walk of Mineola. In this post, I am going to discuss how to improve the schedules.

The main tool I will use is a map of LIRR line speed zones. This was made by Patrick O’Hara, of the invaluable but now taken-offline blog The LIRR Today. I emphasize that Patrick does not endorse my plan to eliminate one-way service, on the grounds that it would unacceptably add to the travel time for conventional peak trips from Hicksville and points east to Penn Station. However, using the map and some data about rolling stock performance, I am going to show that LIRR schedules are so padded that improvements to reliability via simpler scheduling can reduce trip times significantly, more than making up for additional trip times to the elimination of most express runs.

First, let us compute technical trip times. In Boston, I compute these by looking at the acceleration rate of the FLIRT, but New York has passable rolling stock already, which means that modernization does not require full replacement of the fleet. This means we should use the specs of the M7: 13.9 kilowatts per ton (FLIRT: 21.7 maximum, 16.7 continuous), and an initial acceleration rate of 0.9 m/s^2 (FLIRT: 1.2). Assuming no air resistance, this means the theoretical acceleration penalty to 130 km/h, the speed over most of the electrified LIRR main lines, is 23 seconds. Judging by the difference between theoretical and actual FLIRT acceleration performance, the actual penalty is about 26 seconds. The deceleration penalty is 19 seconds, for a total of 45. Up to a speed of 100 km/h, the acceleration penalty is 17 seconds and the deceleration penalty is 13 seconds, for a total of 30.

Let us take dwell times to be 30 seconds. With reasonably wide doors at the quarter points and level boarding, it should not be difficult for the LIRR to hold to this standard. Actual dwells appear to be about 40-50 seconds, but are in the context of considerable schedule padding, as we will see. I am going to round speeds up from mph to km/h, so 80 mph will be rounded to 130 km/h, and 60 mph to 100 km/h; the numbers are close, and when I compute curve speeds, the total equivalent cant seems very low, such that large speed increases are possible. However, I am going to stick to the speed map, only changing to km/h for ease of calculation. Including dwell time, the stop penalty in 130 km/h territory is 75 seconds, and the stop penalty in 100 km/h territory is 60 seconds.

Of note, the actual stop penalties we see on LIRR schedules are larger, on the order of 100 seconds. Part of it is the padding again, but part of it is that LIRR trains do not accelerate as fast as they can; the LIRR derated its trains, limiting their acceleration to about 0.45 m/s^2 to reduce the electric current. This can and should be reversed. If it is not, the acceleration penalty is 40 seconds to 130 km/h and 31 seconds to 100 km/h, while the deceleration penalty, unaffected by the change to maximum acceleration, remains the same; overall, this slows trains by about 15 seconds per stop.

East of Jamaica, there are almost no slow zones on either the Main Line or the Babylon Branch. Hicksville’s 65 km/h zone slows trains that stop at Hicksville by about 30 seconds (even a few hundred meters from the station, trains could go faster if the line speed were higher). The curve between Bethpage and Farmingdale is worth 15 seconds. The slowdown in the interlocking at the junction with the Hempstead Line adds 5 seconds. The slowdowns in Jamaica add 35 seconds east of Jamaica, and 55 west of Jamaica, both for stopping trains. On the Babylon Branch, there are a few restrictions in the 80-110 km/h range, worth in total about 70 seconds; Babylon itself is in 100 km/h territory, adding another 10 seconds.

It is 63.6 km from Jamaica to Ronkonkoma. An express train from Jamaica to Ronkonkoma stopping only at Hicksville would do the trip in 33 minutes. A limited-stop train that stopped at Floral Park, Mineola, Hicksville, and then all stops to Ronkonkoma would do the trip in 44.5 minutes. A train that made every LIRR stop, even ones that Ronkonkoma trains never stop at today, would do it in 53 minutes. Under the current schedule, limited-stop trains, not stopping at Floral Park (with technical travel time of 43.5 minutes), do the trip in an hour, for a pad factor of 38%. After accounting for the fact that LIRR trains don’t accelerate this quickly because of the derating, we obtain a technical travel time of around 45.5 minutes, for a pad factor of 32%, still immense.

In Zurich, schedules are padded 7%. Rerating the trains to allow faster acceleration, and reducing the pad to 7%, would cut the trip time under the current off-peak stopping pattern from an hour to 47 minutes, which can be taken as either a material speed boost or as an opportunity to make more local stops. As I will argue later, trains should make more local stops – specifically, all from Floral Park east. This is five more stops than trains currently make; taking the 7% pad into account, we get 54 minutes, still a noticeable improvement over the current situation.

It is 17.4 km from Penn Station to Jamaica. Rather than detail the slow zones, I will just give the technical travel time, for a full-acceleration M7 making no intermediate stops: 13 minutes, or 14 with a 7% pad; 1 of those 13 minutes comes from the Penn Station throat and its 25 km/h speed limit, which is one of the reasons I have emphasized the need for simpler interlockings in station reconstruction. The schedule has 19 minutes, which is a 45% pad relative to full-acceleration travel time, and around 40% relative to the derated travel time. This is even worse, which I believe comes from a combination of congestion in the Penn Station area and the timed transfer at Jamaica; these mean that delays on one branch propagate to the others, requiring more slack in the schedule to maintain reliability. However, I will note that Zurich’s 7% pad is in the context of an environment with even more branches sharing a trunk line, and a plethora of timed transfers and overtakes.

It is 44.4 km from Jamaica to Babylon. An all-stop train – counting Saint Albans but not Atlantic Branch-only Rosedale and Valley Stream – would do the trip in 41 minutes. As I’ve argued years ago, the Babylon Branch’s stations all have relatively equal ridership, unlike the Main Line, where a few stations dominate, and therefore, we shouldn’t plan around express trains. The current schedule‘s travel time on all-stop off-peak trains is 53 minutes, a pad of 29% relative to full-acceleration performance and 19% relative to the derated performance. I believe the reason there is much less padding here than on the Ronkonkoma Branch is that the service pattern is simpler: off-peak, all trains make all stops, whereas the Main Line mixes skip-stop and express trains between the Ronkonkoma and Port Jefferson Branches. If all trains make the same stops and there are no overtakes, it’s easier to recover from delays, so there is less need for padding. (A similar principle is that you need less padding on double-track lines than on single-track lines.)

As mentioned before, at Swiss 7% padding, making all Main Line trains all-local from Floral Park east allows 54-minute service from Ronkonkoma to Jamaica. It also allows 69-minute service from Ronkonkoma to Penn Station, with a minute-long dwell at Jamaica. This is two minutes less than the fastest daily train on the current schedule, a nonstop that runs once a day and arrives at Penn Station at 7:30 am, before the greatest rush. Even at the Babylon Branch’s 19% padding, we get 60-minute service from Ronkonkoma to Jamaica and 76-minute service to Penn Station, which compares with 75 minutes for two peak trains with a few intermediate stops, and 82 minutes for off-peak trains with the above-mentioned pattern.

As for the Babylon Branch, going down to 7% padding and rerating the trains at higher speed means all-stop trains, including the three current local stops between Jamaica and Penn Station, would do the trip in 62 minutes. This is competitive with most peak trains: one train stopping only at Jamaica does the trip in 53 minutes, arriving at 7:02 am, but the other morning express trains, with pads varying based on how close to the peak of peak it is, do the trip in 62-65 minutes.

I claim that the solution to the problems of the Main Line is to indeed abolish all express runs. At the peak, there is no excuse for them: current traffic between the Ronkonkoma, Port Jefferson, and Oyster Bay Branches is about 23 trains per hour at the peak, and this means that either all peak-direction trains run local, or trains run one way, with local trains on one track and express trains on the other. The LIRR chooses to sacrifice reverse-peak service, because frankly providing a coherent network is not a priority; the priority is connecting peak-hour suburban travelers to Manhattan, and saving them a few minutes at any cost. This is despite the fact that peak travelers are the most expensive to serve – the peak is what drives capital investment, to say nothing of the crew utilization problems. But in this case, the peak-focused service may be self-defeating, as the above computation of pad ratios shows.

In the morning peak, west of Hicksville, the service pattern should thus be the same for every Ronkonkoma or Port Jefferson Branch train: all stops to Floral Park (where passengers could transfer to the Hempstead Branch), then express to Jamaica and then Penn Station. All trains should be as identical as possible, which means cutting the diesels to shuttles and, in the medium term, electrifying the Port Jefferson Branch to the end, since there is high ridership the entire way, whereas the Oyster Bay Branch and the Main Line beyond Ronkonkoma have low ridership. The dispatching should emphasize headway management rather than the schedule. Since all trains are functionally identical from Hicksville west, it does not matter to passengers if their favorite train left early – the next one will show up in at most 3 minutes. For the same reason, the transfer at Jamaica should not be timed at the peak.

The highest rapid transit capacity in the world is on subway lines that use headway management rather than fixed schedules, including the Moscow Metro and many modern driverless lines, where the limit is 39 tph. I do not expect 39 tph on the LIRR, but there is no demand for that on the Main Line right now; the point is to maintain 24 tph without excessive schedule padding. Off-peak, trains should keep a schedule because the frequency is lower, but the lower frequency is precisely what makes delays not propagate so fast; similarly, off-peak, the Jamaica transfer should be timed. The greatest problem is in the afternoon off-peak, but there, the bulk of boardings are at Penn Station, where delays are less likely since it’s the start of the line.

This pattern also suggests which capital investments the LIRR needs to make: it needs to construct interlockings such that there are no conflicts between Main Line trains and other trains. This means two things. First, grade-separating Queens Interlocking, between the Main Line and the Hempstead Branch, which currently has an at-grade conflict between opposing trains (eastbound Hempstead Branch, westbound Main Line). And second, reconstructing Jamaica’s access tracks from the east in a way that allows the Main Line from the east to continue on the Main Line’s express tracks to the west without interference from other lines. Right now, there’s an at-grade conflict with the Babylon Branch, but only in the same direction, which is less problematic.

This means kicking other branches off the express tracks from Jamaica to Penn Station, the most desirable track pair heading west of Jamaica. This is fine. Passengers on branches that connect to Flatbush, or to the local tracks to Penn Station, could still transfer cross-platform at Jamaica, even if at the peak the connecting train does not wait for them. Besides, as noted above, 7%-padded local trains from Babylon to Penn Station would have the same trip time as all but the single fastest express Babylon Branch train today.

Jamaica’s current track layout is 8 platform tracks, numbered 1-8, north to south. There are platforms between tracks 1-2, 2-3, 4-5, 6-7, and 7-8. This platform configuration allows three-way timed transfers: when a train platforms on track 2, passengers can walk from track 1 to track 3 via the train. Right now, to the west, the Atlantic Branch connects to tracks 3-6, and the four tracks of the Main Line each connects to two Jamaica tracks. But track connections exist to persistently connect tracks 2 and 7 to the express Main Line tracks, making 1 and 8 the local tracks and 3 and 6 the tracks to Flatbush. To the east, the Far Rockaway and Long Beach Branches connect to the Atlantic Branch without conflicting with other trains. Local Main Line tracks connect to tracks 1 and 8 without conflict. The only conflict involves the Babylon Branch, which runs in the middle between the eastbound and westbound Main Line tracks before diverging, and points at tracks 2 and 7. The current service pattern is that most Babylon Branch trains run express from Jamaica to Penn Station, making this track layout desirable. However, if they are switched to the local, single-track flyovers to connect them to tracks 1 and 8 are required, or alternatively a connection to tracks 3 and 6, which can be done without flyovers. In either case, three-way timed transfers would be retained, except at the peak.

Under my through-running proposal, the Atlantic Branch would continue to Lower Manhattan, so its demand would be much greater than today, encouraging a layout in which the Babylon Branch connected to tracks 3 and 6 and went to Brooklyn and Lower Manhattan. The Main Line trains would express to East Side Access and Grand Central, with an additional stop at Sunnyside Junction. The Hempstead Branch, connected to Penn Station and the Empire Connection, would have service increased, with mode-neutral fares encouraging more travel from within New York and Hempstead. I would also propose a new branch of the Hempstead Branch, using the inner Central Branch, going to the East Garden City job cluster. The Oyster Bay Branch would be electrified and its junction with the Main Line grade-separated.

However, I emphasize that none of my proposed schedule changes requires the intensive capital investment associated with connecting Flatbush with Lower Manhattan. Even East Side Access is not required. Queens Interlocking would be grade-separated, and the Oyster Bay Branch would be reduced to a shuttle with an additional track at Mineola (unless electrifying the entire line and grade-separating the junction is cheaper in the short run, which I doubt). Initially, I am not sure the at-grade conflict with the Babylon Branch on the approach to Jamaica would be deadly. The subway has a same-direction at-grade conflict at Rogers Avenue Junction, between the 2, 3, and 5 trains, whose combined peak frequency is higher than that of the Main Line and Babylon Branch’s. Rogers Avenue Junction is a key bottleneck on the numbered lines in New York, which is why the LIRR should not replicate it in the long run, but in the short run, it is fine.

To conclude, here are proposed westbound timetables for Ronkonkoma, Babylon, and Hempstead trains. These assume no new stations and only the minimally required physical infrastructure (that is, grade-separating Queens Interlocking).

Main Line:

Ronkonkoma 7:00
Central Islip 7:05
Brentwood 7:09
Deer Park 7:12
Wyandanch 7:16
Pinelawn 7:19
Farmingdale 7:23
Bethpage 7:27
Hicksville 7:31
Westbury 7:35
Carle Place 7:37
Mineola 7:40
Merillon Avenue 7:42
New Hyde Park 7:44
Floral Park 7:47
Jamaica 7:53
New York Penn 8:08

This is a total travel time of 68 minutes, and not 69 as advertised above. This is because of rounding artifacts.

Hempstead Branch:

Hempstead 7:31
Country Life Press 7:33
Garden City 7:36
Nassau Boulevard 7:38
Stewart Manor 7:40
Floral Park 7:43
Bellerose 7:34
Queens Village 7:46
Hollis 7:49
Jamaica 7:53
Kew Gardens 7:57
Forest Hills 7:59
Woodside 8:04
New York Penn 8:12

The 4-minute difference between local and express travel time between Jamaica and Penn Station comes from the fact that the intermediate stations are for the most part in slower zones than 130 – only at Forest Hills is there enough of a distance to get up to 130, and only west of the station, not east. Erratum: although it is true the stations are in slow zones, I wrote this paragraph thinking there are four intermediate stations, where of course there are only three; 4/3 = 80 seconds per stop, which comes from rounding artifacts.

The Hempstead Branch has a 1.5-km single-track segment starting west of Hempstead and ending east of Garden City. It is quite slow; the 25 km/h curve just north (west) of Country Life Press has geometry good enough for 50 km/h without any superelevation (cant deficiency would be 150 mm), and with 150 mm superelevation would be good for 70. Replacing that entire 25-50 km/h segment with 70 km/h saves about a minute of travel time.

Babylon Branch:

Babylon 7:04
Lindenhurst 7:08
Copiague 7:10
Amityville 7:12
Massapequa Park 7:15
Massapequa 7:17
Seaford 7:19
Wantagh 7:21
Bellmore 7:24
Merrick 7:26
Freeport 7:29
Baldwin 7:31
Rockville Centre 7:34
Lynbrook 7:37
St. Albans 7:43
Jamaica 7:48
Kew Gardens 7:52
Forest Hills 7:54
Woodside 7:59
New York Penn 8:07

I arbitrarily chose the Ronkonkoma departure time to be 7:00, and then chose the Hempstead Branch schedule to allow a timed transfer at Jamaica. The five-minute offset for the Babylon Branch should be suggestive of the proposed frequency: off-peak, every ten minutes on the Babylon Branch (possibly every twenty but also every twenty on the West Hempstead Branch), every ten minutes on the Hempstead Branch (possibly every twenty but also every twenty on the Central Branch to East Garden City), and every ten minutes on the Main Line, with each of the Ronkonkoma and Port Jefferson Branches getting a train every twenty minutes. The Atlantic Branch trains should run every twenty minutes per branch, with a three-way timed transfer with the Main Line and Hempstead Branch. Off-peak, the Babylon Branch doesn’t transfer to anything else, so there is no need to worry about its at-grade conflict at Jamaica.

What’s Going on with Hudson Tunnel Cost Overruns?

Twenty-five billion dollars. The New York region’s political heavyweights – Andrew Cuomo, Chris Christie, Chuck Schumer, Cory Booker, Bill de Blasio – all want new Hudson tunnels, without any state funding for them; Schumer is proposing federal funding and a new interstate agency, parallel to the existing Port Authority, and a total budget of $25 billion. This is the highest figure I have seen so far; Amtrak still says $16 billion and Cuomo says $14 billion, and it’s likely the Gateway tunnels are indeed about $16 billion, while the remainder is for associated projects, such as fully four-tracking the line from Newark to the tunnel portal, a distance of about 11 kilometers. It is not my intention to criticize the cost; I’ve done that before.

Instead, I would like to point out that each time Gateway is the news, there usually seems to be a fresh cost escalation. Is it a $10 billion project? A $14 billion project? A $16 billion project? Or a $25 billion project? And what is included exactly? Amtrak does not make it clear what the various items are and how much they cost; I have not seen a single cost estimate that attempts to establish a baseline for new Hudson tunnels without the Penn Station South component, which would provide a moderate short-term boost to capacity but is not necessary for the project. The articles I’ve seen do not explain the origin of the $25 billion figure, either; it may include the tunnel and full four-tracking of Newark-New York, or it may include additional scope, for example Amtrak’s planned vertical circulation for a future (unnecessary) deep cavern for high-speed rail (see picture here).

The main issue here, the way I see it, is the interaction between public trust and political self-aggrandizement. It is common in all aspects of Israeli governance for new ministers to announce sweeping changes and reorganizations, just to remind the country that they exist and are doing something; this generally makes it harder to implement gradual reforms, and makes it completely impossible to do anything by consensus. Implementing a plan that was developed by consensus over many years makes one a bureaucrat; leaders change everything. In the US, this is the case not everywhere in government, but at least within public transportation infrastructure.

As we see in the case of Schumer’s call for a new interstate authority, the changes a heavyweight politician makes in order to appear as a leader have nothing to do with real problems that the project may have. Solving those problems requires detailed knowledge of the project at hand, which is the domain of bureaucrats and technocrats, and not of heavyweight politicians. Even a heavyweight who understands that there is a problem may not know or care about how to fix it: for example, Christie used the expression “tunnel to Macy’s basement,” invoking the deep cavern, to explain why ARC was wasteful, but chose to cancel the project rather than to remove the cavern and restore a track connection from the tunnel to Penn Station, which was in the official ARC Alt P plan until it was cut to limit the cost overruns. Managing a project is hard, and is, again, the domain of technocrats. The heavyweight will grandstand instead, regardless of whether it means canceling the project, or proposing an entirely new layer of government to build it.

As for trust, let us look at the benefits of new Hudson tunnels. The traditional, and least objectionable, is added capacity: the existing tunnels are currently at capacity during rush hour, and there’s much more demand for rail travel from New Jersey to Manhattan than they can accommodate. We can measure this benefit in terms of the combination of increased ridership from more service from more suburban areas, reduced crowding, and possibly slightly higher speeds. As a crude estimate of this benefit, current New Jersey Transit ridership at Penn Station is 87,000 per weekday in each direction. Doubling capacity means roughly doubling ridership, which would come from a combination of induced demand and diversion of traffic from cars, Port Authority buses, and commuter rail-PATH connections. This means the new tunnel can expect about 175,000 new commuter rail trips per weekday. At $10,000 per weekday trip, which is about average for very large non-US cities’ subway extensions, this justifies $1.75 billion. At $20,000, about the same as the projection for Grand Paris Express, Crossrail, and Second Avenue Subway Phase 1, all of which are justified on grounds of ridership and capacity on parallel lines, this is $3.5 billion. At $40,000, about the same as old projections for Second Avenue Subway Phase 2, which I used to analyze de Blasio’s Utica subway proposal, this is $7 billion. A $25 billion budget corresponds to a cost per rider well into the range of airport connectors.

Now, I’d like to think that informed citizens can look at these costs and benefits. At least, the fact that public transit projects only cost as much per rider as Gateway if they’re airport connectors (thus, of especial interest to the elites) or if something very wrong happened with the ridership projections, suggests that there is, normally, a ceiling to what the political system will fund. Even at $14-16 billion, the two states involved and the federal government groaned at funding Gateway, speaking to the fact that it’s not, in fact, worth this much money. In contrast, a bigger project, with bigger benefits, would be funded enthusiastically if it cost this much – for example, California already has almost this much money for high-speed rail, counting Prop 1A funds that are yet inaccessible due to the requirement of a 50/50 match from other sources.

Against this background, we see scare stories that Gateway must be built for reasons other than capacity and ridership. The old tunnels are falling apart, and Amtrak would like to shut them down one track at the time for long-term repairs. The more mundane reality is that the tunnels have higher maintenance costs than Amtrak would like since each track can only be shut down for short periods, on weekends and at night. This is buried in technical documents that don’t give the full picture, and don’t give differential costs for continuing the present regime of weekend single-tracking versus the recommended long-term closures. The given cost for Sandy-related North River Tunnel repairs is $350 million, assuming long-term closures, and it’s unlikely the present regime is billions of dollars more expensive.

I am reminded of the Tappan Zee Bridge replacement: the existing bridge has high maintenance costs due to its age and poor state, but the net present value of the maintenance cost is $2.5 billion and that of the excess maintenance cost is less, both figures well below the replacement cost. The bridge itself is structurally sound, but in popular media it is portrayed as structurally deficient. This relates to the problem of heavyweight politicians, for the Tappan Zee Bridge replacement is Cuomo’s pet project.

More fundamentally, who can trust any claim Amtrak makes about the structural soundness of tunnels? It says a lot that, when I asked on Twitter why transportation authorities do not immediately shut down unsafe pieces of infrastructure, various commenters answered “politics,” and on one (I believe James Sinclair) suggested that Amtrak order an emergency closure of one of the Hudson tunnel tracks just to drive home the point that new tunnels are necessary. I would like to stress that this is not Amtrak or a heavyweight proposing that, but the mere fact that commenters can seriously talk about it is telling. Most of the writers and commenters on the US transit blogosphere are very progressive and hate the Republicans; I have not seen a single comment recommending that the Democrats steal elections, fudge official statistics to make the party look more successful, or arrest Republican politicians on trumped-up charges, because in the US (and other first-world democracies), this is simply not done, and everyone except conspiracy theorists recognizes it. But politicizing the process of deciding which infrastructure projects are necessary for safety purposes and which are simply service expansions is normal enough that people can propose it half-seriously.

This brings me back to the issue of what I want the politicians to do, and what I expect them to do. What I want them to do is to be honest about costs and benefits, mediate between opposing interests (including different agencies that fight turf battles), and make decisions based on the best available information. This would necessarily limit costs, since, from the point of view of a member of Congress, if they get $25 billion for a piece of infrastructure then they cannot get $25 billion for another priority of theirs. They don’t do that, not in the US, and I’ve learned not to expect any better, as have the voters. Instead of working to make $25 billion go a longer way (to put things in perspective, I expect my regional rail tunnel proposal to cost $15-20 billion, at Crossrail 2 costs), Schumer is working to make $25 billion to sound like it’s going to a bigger deal than the new Hudson tunnels actually are.

None of this is a secret. American voters have learned to expect some kind of machine-greasing and politicking, to the point of losing the ability to trust either the politicians or the agencies, even in those cases when they are right. The result is that it’s possible to stretch the truth about how necessary a piece of infrastructure is, since people would believe or disbelieve it based on prior political beliefs anyway, and there is no expectation that the politicians or public authorities making those claims will have to justify them to the public in any detail. Lying to the public becomes trivially easy in this circumstance, and thus, costs can rise indefinitely, since everyone involved can pretend the benefits will rise to match them.

Why Labor Efficiency is Important

In North America, commuter trains run with conductors, often several per train. On most systems they walk the entire length of the train to check every passenger’s ticket, whereas on a few, namely in California, they do not do that anymore, but there are nonetheless multiple conductors per train. In addition, the scheduling is quite inefficient, in that train drivers do not work many revenue hours. I investigated what effect this has on operating costs, and it turns out that the effect on the marginal operating costs, which are important for off-peak service, is large: on the LIRR and Metro-North, nearly fivefold improvements in revenue train-hours per on-board employee (driver or conductor) are possible, which would halve the marginal operating cost per train-km. The bulk of this post is dedicated to explaining the following breakdown of variable operating costs:

train costs

The National Transit Database has figures for service in car-km and car-hours for a variety of US transit agencies. In New York State, the Empire Center has lists of every public employee’s position and pay, which we can use to figure out the average pay of a train driver and conductor and the productivity of their labor. The NTD numbers are as of 2011, so I will use the number of employees of 2011, but the pay per employee of 2014 (at any rate, there have been no major service changes since 2011, so numbers are similar). In 2011, the LIRR averaged 5,000 car-hours per driver-year, and Metro-North averaged 4,000; the LIRR runs longer trains than Metro-North, so the figure for both railroads appear to be about 500 train-hours per driver-year. Both railroads had a little bit more than 2 conductors per driver on average (2.14 Metro-North, 2.47 LIRR). The average pay of a driver, as of 2014, is $109,000 on the LIRR and $120,000 on Metro-North, whereas the average pay of a conductor is $112,000 on the LIRR and $96,000 on Metro-North.

From this, we can piece together the average operating cost of commuter rail derived from on-board labor, per train-hour: $771 on the LIRR, $714 on Metro-North. Assuming 8 cars per train (and again, the LIRR tends to run longer trains), this is around $90-95 per car-hour. According to the NTD, the average operating cost of both was about $550 per car-hour in 2011, but this includes fixed costs, such as management and rolling stock. As we will see, variable operating costs are much lower.

As a digression, I’d like to point out that the peaky schedule of commuter rail contributes to the low productivity of the drivers. Crew schedules include substantial gap time between trips, and occasionally, especially on low-frequency diesel branches, they deadhead. That said, the subway’s number of revenue train-hours per driver is not materially different. For higher figures, one must leave New York. Toei got about 700 revenue hours per driver when I last checked, but I can no longer find the reference. On the London Underground, I do have fresh references, pointing in the same range: 76.2 million train-km per year at 33 km/h average speed (from TfL’s facts and figures), and a bit more than 3,000 train operators. In 2012, the last year for which there’s actual rather than predicted data (see also PDF-p. 7 of the TfL Annual Report), there were 720 revenue hours per train driver. This is in tandem with a less peaky schedule than in New York: although the average speed is barely higher than that of the New York subway, as reported in the NTD, the trains travel about 180,000 km per year (see fact 149 here), twice as long as in New York. In Helsinki, metro trains run every 10 minutes all day on each branch, every day, without any extra peak service, contributing to even higher utilization: the schedules show 65,000 revenue-hours per year, whereas a factsheet from 2010 shows 75 metro drivers, for a total of 867 revenue hours per driver. In both the UK and Finland, average hours per employee are marginally shorter than in the US; London Underground drivers have 36-hour workweeks.

The importance of this computation is not just to highlight that 44-73% improvement in revenue-hours per employee is possible, but to point out that, on the margins, adding off-peak service would make crew schedules more efficient, since higher frequency would reduce the need to deadhead and to wait between trains. This means that, although the average operating cost may be about $750 per train-hour, the marginal cost is lower, even without changes to work rules.

Suppose now that trains run without conductors, using proof-of-payment as on light rail lines, even ones in North America, and on countless commuter rail systems in Continental Europe. Suppose also that there are 720 revenue-hours per driver, and that a driver is paid $115,000 per year. This means that running extra trains would not cost $90-95 in on-board labor per car-hour, but only $20, a nearly fivefold improvement. At Helsinki’s level of productivity, a nearly sixfold improvement to $16.60 is possible. At the LIRR’s present average speed of 50 km/h (compared with 53 on New Jersey Transit and 59 on Metro-North), the fivefold improvement based on London Underground productivity would cut the average cost per car-km from $1.80-1.90 to $0.40; at a higher but still realistic 67 km/h, it’s a cut from $1.35 to $0.30. A large majority of this cut comes from eliminating conductors, which, by itself, would cut costs threefold, but raising driver productivity would allow an additional cut of 30-40%. I again stress that the marginal cost is lower than the average cost computed here, since less peaky schedules come with simpler crew scheduling; more off-peak service would by itself cut the average cost, which means its marginal cost would be quite low.

Let us now look at other variable costs than on-board labor. Two years ago, I did this computation for high-speed rail, and found that, provided the schedules did not have extra rush hour service, operating expenses would be very low. We can do the same computation for commuter rail, and note that the lower speeds imply that operating and maintenance costs are spread across less passenger-km, raising costs. Let us consider train maintenance, cleaning, and energy.

I do not have information about train maintenance costs on commuter rail. Instead, I will use those of high-speed rail, for which standards are higher. As I noted in my computation from two years ago, the reference here is California HSR’s 2012 Business Plan, which aggregates these figures from around the world on PDF-p. 136. Maintenance costs per train-km are $4.47 for the Tokaido Shinkansen (with 16-car trains) and $2.58 per the UIC (with what I assume are 8-car trains), both in 2009 dollars. These figures cluster around $0.30 per car-km in 2009 dollars, or $0.30-35 per car-km in 2014 dollars.

With cleaning, there is some information about commuter rail: the Empire Center has lists of coach cleaners on Metro-North (there are 314) and their pay (on average, a little less than $50,000 a year). This seems high given the amount of service Metro-North runs – about $0.15 per car-km. Shinkansen trains are cleaned on a seven-minute turnaround in Tokyo, using one cleaner per standard-class car; this includes tasks that are not required on commuter rail, such as flipping seats to face forward. A cleaner making $30 per hour cleaning a single car per 15 minutes, with each train cleaned once per 150 km roundtrip, would cost $0.05 per car-km. I suspect that part of the low productivity of Metro-North cleaners is again a matter of low off-peak frequency – Shinkansen cleaners work almost continuously – but I don’t have comparative data to back this up; New York City Transit pays even more per cleaner per car- or bus-km, but this is on much lower average speed, and per car- or bus-hour, it pays about $6.40, vs. about $8.90 for Metro-North. I’m going to pencil in $0.10 per car-km as the cost of cleaning.

Energy costs we can compute from first principles. This is easier than for HSR, since commuter trains travel at such speed that a large majority of their energy consumption is in acceleration, rather than cruising. The explicit assumptions I am making is that the top speed is 130 km/h (the two main LIRR lines are mostly 80 mph territory), each car weighs 54 metric tons (the LIRR M7s weigh 57.5 and the Metro-North M8s even more, but this is very high by international EMU standards, thanks to FRA regulations), the average distance between stations is 4 km (the LIRR’s average is less than that if all trains make all stops and more if there are some express trains), and the track resistance per unit of train mass is the same as for the X 2000, for which data exists on PDF-p. 64 of a thesis on tilting trains. Regenerative braking is assumed to exactly cancel out with losses in transmission. Train acceleration performance is assumed to be like that of the FLIRT, which would take about a kilometer to accelerate to line speed and have about 2 km of cruising before slowing down for the stop; the M7 has inferior performance, but this would reduce energy consumption since trains would spend more time at lower speed.

With the above assumptions, each acceleration, cruise, and deceleration cycle between stations consumes about 13 kWh, of which 10 kWh is required to accelerate the train to top speed, and the other 3 are for overcoming track resistance. See rough computations in a subthread on California HSR Blog starting with this comment, and bear in mind the initial comment made a large computational error. As for April of this year, transportation electricity costs in the state are $0.1245 per kWh, giving us about $1.60 per 4-km interstation, or $0.40 per car-km.

Overall, those three items are $0.80 per car-km. This means that going from paying train crew $1.35 per car-km to paying them $0.30 per car-km represents halving of direct marginal operating expenses: it means going from $2.15 to $1.10 per car-km. Finally, let us add management costs, which are not exactly marginal costs, but do grow as the workforce grows, since more employees require supervisors. At RENFE, we can extract 0.27 support and management employees per operations employee from the data on PDF-p. 46 of its 2010 executive summary. On the Helsinki urban rail network, the corresponding figure is 0.34 as per the factsheet referenced above. This affects train crew, cleaning, and maintenance staff, but not energy. If this means 30% extra costs, this means going from $2.675 to $1.31 per car-km – again, we see costs are halved.

The off-peak LIRR fare is 15 cents per kilometer at long distances (14 to Ronkonkoma, but much more at shorter distances, for example 21 to Hicksville). If the marginal cost of running off-peak service is $1.31 per car-km, it means a car needs to have 9 passengers without season passes on it paying 15 cents per km for the trip to break even. If it’s $2.675, it needs 18. Passengers who commute off-peak and get season passes for those commutes also contribute, but less – a monthly pass for Ronkonkoma is $377, which at 46 trips a month is 10 cents per kilometer. It is not hard to have 9 passengers even on a long train, or even 13 (at the lower rate of season passes); Ronkonkoma itself is a park-and-ride, where this is less likely, but high enough passenger volumes as far as Mineola and Hicksville and all over the Babylon Branch are quite likely. If the required minimum is 18, let alone 26, this is substantially harder.

I harp on North American mainline rail operations for a variety of antiquated practices, but the on-board overstaffing is by far the worst. While improvement in train driver productivity can occur as a natural byproduct of improvement in off-peak frequency, getting rid of conductors is not so easy. It means a fight with the unions over job losses. Some of the required layoffs can be mitigated by retraining conductors as train drivers and running more service, but this would not boost service hours by a factor of 5; on the Ronkonkoma Branch, the peakiest of the three long LIRR lines, boosting off- and reverse-peak frequency to half the peak frequency would only increase train service by a factor of about 1.8.

I am not an expert on labor relations, so I do not know if any solution barring a prolonged SEPTA-style strike could work, alone or in combination. One possibility would be to commit to reducing working hours in the next five or ten years instead of hiking pay; working hours would be gradually reduced to core Western European levels, with 35-hour workweeks and 6 weeks of paid vacation, and hourly pay would rise as scheduled while annual pay would be frozen. Another possibility is that the MTA would help laid off employees find private-sector work, as happened in the 1980s with Japan National Railways (see PDF-pp. 103-4 of a handbook on rail privatization). This possibility requires implementing the reform at a time of wage growth and low unemployment, when private-sector work is easier to find, but the US is posting strong job growth numbers nowadays and is projected to keep doing so for at least another year.

But whatever happens, the most important reform from the point of view of reducing marginal off-peak service provision costs is letting go of redundant train crew. Halving the variable operating costs is exactly what is required to convert the nearly empty off-peak trains from financial drains to an extra source of revenues, balancing low ridership with even lower expenses. This would of course compound with other operating efficiencies, limiting the losses of branch lines and turning the busier main line trains into profit centers. But nowhere else is there the possibility of cutting costs so much with one single policy change as with removing conductors and changing the fare enforcement system to proof-of-payment.

Update 7/31: first, check comments below about maintenance costs: as far as I can tell from poorly presented Empire Center data, they are about 2.5 times higher, for both trains and the infrastructure, than the maintenance costs of high-speed rail. Although the effect of reducing those costs to conventional HSR level is larger than the effect of eliminating conductors, the details of reducing maintenance costs are far more delicate than those of eliminating conductors and running trains more often so that train drivers have less downtime.

Second, there is a small error in the above calculations: the figure of $90-95 in crew salary per car-hour is based on two conflicting assumptions. To get to $771 per train-hour on the LIRR, I assumed the LIRR ran 10-car trains. To get down to the $90-95 range, I assumed 8-car trains; 10-car trains would make this $77/hour. If we redo the entire calculation with 10-car trains, still with HSR maintenance costs, then instead of a cut from $2.675/car-km to $1.31/car-km, improved labor efficiency would cut costs from $2.415/car-km to $1.21/car-km. This is based on exact LIRR salaries, whereas the original calculation assumes hybrid LIRR/Metro-North salaries, and Metro-North pays drivers better than the LIRR.

Now, trains are somewhat longer at the peak than off-peak. If off-peak service is already with 8-car trains, and the average number of conductors is constant, then the original calculation (a cut from $2.675 to $1.31) still holds. After all, the salaries of train drivers and conductors are the same no matter how long the train is. But the number of conductors is not constant – let’s say it is proportional to train length, so 8-car LIRR trains have 2 conductors instead of 2.47, just as Metro-North’s average number of conductors per train is shorter than the LIRR’s, in tandem with its shorter consists. This changes the calculation to a cut from $2.535 (reflecting fewer conductors than in the original calculation) to $1.31. Observe that no matter what assumption we use, the operating cost cut coming from removing conductors and using drivers more efficiently is about 50%, give or take 1-2%.

Penn Station Elimination Followup

Several commenters, both here and on Streetsblog, have raised a number of points about my proposal to eliminate above-ground Penn Station and reduce the station to a hole in the ground. A few of those points are things I’d already thought about when I wrote that post and didn’t want to clutter; others are new ideas that I’ve had to wrestle with.


On Streetsblog, Mark Walker says, “Getting on a train at Penn is not like using the subway. Instead of a train that runs every five minutes, you’re waiting for a train that runs once per hour (more or less),” implying nicer waiting areas and lounges are needed. My proposal, of course, does not have dedicated waiting areas. (That said, there’s an immense amount of space on the platforms under the escalators, which could be equipped with chairs, tables, and newsstands.)

However, I take exception to the notion that when the train runs every hour, passengers wait an hour. When I lived in Providence, a few trips to Boston, New Haven, and New York taught me the exact amount of time it’d take me to walk from my apartment to the train station: 21 minutes. I learned to time myself to get to the station 2 minutes before the train would leave, and as I recall, I missed the train twice out of maybe 30 trips, and one of those was when I had a lot of luggage and was in a taxi and couldn’t precisely gauge the extra travel time. Walking is that reliable. People who get to Penn Station by subway have to budget some extra time to account for missed subway trains, but from much of the city, including the parts of the CBD not within walking distance from Penn, the required spare time is less than 10 minutes. Moreover, Penn is at its most crowded at rush hour, which is precisely when subway frequency is the highest, and people can reliably time themselves to within less than 5 minutes.

Outlying train stations in Switzerland are deserted except a few minutes before a train shows up, because the connecting transit is all timed to meet the train. This is of course inapplicable at very large stations with many lines, but the modes of transportation that most Penn Station users take to the station are reliable and frequent, if you can even talk of frequency for walking. The result is that the amenities do not need to be extravagant on account of waiting passengers, and do not need to be more than those of a busy subway station in a busy area.


Several commenters raised the idea of shelter. One option, raised by James Sinclair, is an arched glass roof over the station, on the model of Milan. This involves above-ground infrastructure, but the arched structure is only supported at the margins of the compound, which means that the primary feature of a hole-in-the-ground station, the lack of anything that the track area must support the weight of, is still true. I do not think it’s a bad idea; I do, however, want to raise three additional options:

Do nothing. A large proportion of the usable area of the platforms would be located under the walkways above, or under the escalators and staircases. Having measured the depth more precisely, through Plate 14 here, I found it is 13 meters from street level to top of rail, or 12 from street level to platform level, translating to 21 meters of escalator length, plus 2.2-2.5 meters on each side for approach (see page 23 here). About 16 of those 21 (18.5 out of 25.7, counting approaches) meters offer enough space for passengers to stand below the escalators, leading to large areas that could be used for shelter, as noted in the waiting section above.

Build a simple shelter. Stockholm-area train stations have cheap corrugated metal roofs over most of the length of their platforms. These provide protection from rain. Of course those roofs require some structural support at the platform, but because they’re not supposed to hold anything except rainwater, those supports are narrow poles, easy to move around if the station is reconfigured.

Build a street-level glass pane. This may be structurally intricate, but if not, it would provide complete shelter from the elements on the track level, greatly improve passenger circulation, and create a new public plaza. But in summer, the station would be a greenhouse, requiring additional air conditioning.

Note that doing nothing or building a simple shelter would not protect any of the track level from heat or cold. This is fine: evidently, open-air stations are the norm both in cities with hotter summers than New York (Milan is one example, and Tokyo is another) and in cities with colder winters (for example, Stockholm). Passengers are usually dressed for the weather anyway, especially if they’re planning on walking to work from Penn or from the subway station they’re connecting to.


Multiple commenters have said that public art and architecture matter, and building spartan train stations is unaesthetic, representing public squalor. I agree! I don’t think a hole-in-the-wall Penn Station has to be drab or brutalist. It can showcase art, on the model of the mosaics on the subway, or the sculptures on the T-Bana. It can use color to create a more welcoming environment than the monotonous gray of many postwar creations, such as the Washington Metro. The natural sunlight would help a lot.

But more than that, the walkways themselves could be architectural signatures. The best way to build them without supporting them on the track level is some variant on the arch bridge – either the classical arch bridge (which would require three or four spans), or a through-arch. This gives a lot of room to turn the bridges into signature spans. The design work would raise their cost, but short pedestrian bridges tend not to display the same cost structure as massive vehicular ones; the Bridge of Strings, a Calatrava-designed light rail bridge on a line that cost far more to build than light rail should cost, was $70 million for 360 meters. The walkways would not carry light rail, and would be about 140 or 150 meters in span.


Commenters both here (Caelestor) and on Streetsblog (Bolwerk, Matthias, C2check) have brought up transit-oriented development as a reason to allow a tall building on top of the station. With respect, I think on top of a train station is exactly the wrong place to build a tower. Let’s Go LA has an explanation for why the engineering for air rights is so complicated, although he stresses that Penn Station and Grand Central, which were built with the expectation of future high-rise air rights, are exceptions. I’ll add that Penn Station track simplification would also remove many crossovers and switches, making it easier to build air rights. That said, the track spacing is not friendly to the column spacing he proposes.

In New York, the tallest and most expensive recent private-sector office tower on solid ground, the Bank of America Tower, cost around $6,000 per square meter of floor space, in today’s money. Some of the luxury residential towers are more expensive; so are the new World Trade Center buildings, e.g. One World Trade Center was $12,000 per m^2. But the office towers cluster in a specific band of cost, around $2,500 to $5,000 per square meter, with taller towers generally more expensive. The Hudson Yards air rights towers cost in the $10,000-14,000 per square meter range, as much as One World Trade Center. Contrary to Bloomberg’s promises of windfall property tax revenues as his justification for the 7 extension, the city has had to offer tax abatement to encourage developers to build at those prices. Amtrak’s plan for Penn Station South assumes the block immediately south of Penn Station would cost $769 million to $1.3 billion to acquire; when I roughly computed its floor area by counting floors per building, I got 100,000 m^2, which means the price of real estate in that area, $7,700-13,000/m^2, is no higher and may be lower than the construction cost of air rights towers.

In contrast, some sites on firm ground immediately surrounding Penn Station are ripe for redevelopment. The block south of Penn Station, as noted above, has about 100,000 m^2, for a block-wide floor area ratio of 6.7. The Empire State Building’s floor area ratio is 33, so replacing the block with closely spaced supertall towers would require developers to burn just 20% of their profit on acquiring preexisting buildings. To the north of Penn Station, the two sites at 7th and 8th Avenues, flanking One Penn Plaza, are flat; so is nearly all of the western part of the block northeast of Penn, between 33rd and 34th Streets and 6th and 7th Avenues. Eighth Avenue is not developed intensely at all in that latitude – it only becomes important near Times Square. Supertall buildings surrounding Penn Station could even be incorporated into the station complex: railroads using the station might decide to lease offices in some of them, and the exteriors of some of those buildings could incorporate large clocks, some signage, and even train departure boards.


TheEconomist, who has had some truly out-of-the-box ideas, raises a very good point: how to phase the deconstruction of Penn Station in ways that allow service to continue. I don’t have a complete answer to that. Arch bridges, in particular, require extensive falsework, which may complicate matters. However, a general phase plan could consist of knocking down the above-ground buildings, then removing the upper concourse (leaving only the lower), and then removing arms of the lower concourse one by one as the walkways above them are built.

Passenger Throughput

In comments here, people have suggested several alternatives to my proposal to reconfigure Penn Station to have 12 tracks and 6 island platforms between them. There should be 6 approach tracks, as I outlined here: southern approach tracks, combining new Hudson tunnels with a link to Grand Central (which I call Line 2); central tracks, combining the preexisting Hudson tunnels with the southern East River Tunnels (Line 1); and northern tracks, combining the realigned Empire Connection and West Side Yard with the northern East River Tunnels (Line 3).

In my view, each approach track should split into two platform tracks, flanking the same platform. In this situation, there is no need to announce track numbers in advance, as long as the platform is known. Stockholm does this on the commuter lines at Stockholm Central: the northbound lines use tracks 15 and 16 and the southbound lines use tracks 13 and 14, with a platform between each of these track pairs, and until a few minutes before a train arrives, it’s signed on the board as “track 13/14” or “track 15/16.”

The compound looks 140 or 150 meters wide; the maps are unclear about to what extent Penn extends under 31st and 33rd, but according to a diagram Joey shared in comments, it extends quite far, giving 150 meters or even a bit more. Under my proposal, this is enough for 6 platforms of 17 or 18 meters. It sounds like a lot, but it isn’t, especially on Line 3, where Penn Station is the only CBD train station, which implies entire trains would empty at Penn in the morning rush hour. (Line 2, which I expect to be the busiest overall because it’d serve both Penn and Grand Central, is the one I expect to have the least platform crowding problems, precisely because it’d serve both Penn and Grand Central.)

Staircases should be 3 meters wide. Escalators with 1-meter steps have 1.6-meter pits; their capacity is theoretically 9,000 passengers per hour, but practically only 6,000-7,000. Clearing 30 entire trains per hour, filled to seating capacity with 4 standees per square meter of standing space, requires moving about 75,000 passengers per hour. (Per meter of train length, this is comparable to the 4/5 trains and the RER A at their peaks.) With 6 access points, this requires 2 up escalators per access point. The minimum is then 3 escalators, running 2-and-1 at the peak; 4 is better.

In comments, Ari Ofesvit proposes the Spanish solution, which I’ve discussed in previous posts. I’m now convinced it is not the right solution, simply because it compels platforms to be too narrow (about 8.6 meters), which has room for exactly half of what a standard platform twice the width would have, without the possibility of running 4 escalators 3-and-1 at the peak. My comment in that post has more detail, albeit with the assumption that the compound is 140 meters wide.

Fbfree proposes something else: more platforms for intercity trains. Giving intercity trains more platforms (as is done in Stockholm, which has just two approach tracks to the south) gives them more time to dwell; unfortunately, it also narrows the platforms for the regional trains, precisely the ones that can expect the most crowding. Even a single-track platform would take up space out of proportion to the number of passengers it would serve.

Pedestrian throughput is, at the maximum, 81 people per meter of walkway width per minute; this assumes two-way flow, but the numbers for one-way and multiway flow aren’t too different. This is a little less than 5,000 per meter-hour. An escalator bank with two up escalators then needs almost 3 meters of unobstructed platform width on one side (the other side can be used as overflow, but most passengers would use the side of the platform the train discharged them on). This is easy to supply with a 4-escalator bank on a 17-meter platform (there would be 3.8 meters); on an 8.6-meter Spanish platform, there’s only one up escalator per bank, so half the width is required, and is indeed obtainable. But if there are extra platforms for intercity trains, this becomes more strained.

For maximum throughput, it is necessary to minimize separation between escalators on the platform, down to about 6 meters plus approaches, in order to allow wider walkways, which in this case would make the walkways about 25 meters wide. The point here is that the walkways have to have very high pedestrian capacity, since each of them is fed by escalators from all platforms. At 25 meters, the capacity is about 15% less than that of two up escalators per access point (121,500 vs. 144,000), which is fine since some platforms (Line 2 in both directions, Line 3 eastbound in the morning and westbound in the afternoon) would not have so much traffic. But putting in elevators would disrupt this flow somewhat.

I see two ways to increase capacity in the future, if train traffic warrants it: first, build the glass floor/ceiling I outlined above, in the shelter section. This is the simplest possibility. Second, build three more walkways, midway between 7th and 8th Avenues and the two walkways already discussed, and have each walkway or avenue serve only half the platforms – one serving eastbound platforms, one serving westbound platforms. At this point the station would be half-covered by walkways, if they are all about 24 meters wide, but the walkways could be narrowed; as long as they are longer than 15 meters, any passenger arriving on a platform by any of the included access points would be sheltered by the walkway serving platforms in the opposite direction. Elevators should go from each walkway to each platform still, which would facilitate transfers, but the workhorse escalators would spread the load among different walkways.


I’d originally thought that the walkways could host retail and food concessions. The calculation in the preceding section suggests that this wouldn’t be possible, unless the walkways are widened beyond the escalators, with concessions on the outside. Every meter of walkway width would be required for passenger circulation. Even information pamphlets might be restricted to the very edges of the walkways; train departure boards would have to be mounted in the air, for example on the support cables if the through-arch option were chosen for the walkways.

However, there is ample room directly beneath the escalators, staircases, and walkways. With the caveat that escalators of such length need an extra midway support point, they would still have a lot of space underneath: 15-16 meters with sufficient clearance for people to stand comfortably (say, at least 2.5 meters of clearance above); with the upper approaches and the walkways, this is 60-62 meters of largely unobstructed space, for a 60*10 space that could be used in almost any way. Even in the 5-6 meters with less clearance above to the escalator, it’d be possible to use the space at least partly – for example, for sitting, or for bathrooms, the minimum clearance is reduced (I’m writing this post from my apartment, where the ceilings slope down, and the ceiling height above my couch is about 1.5 meters).

There would be two such 60*10 spaces per platform, plus two smaller spaces, near 7th and 8th Avenues, depending on exact placement of access points to the subway. This gives us twelve 60*10 spaces. I doubt that they could ever host high-end concessions, such as full-service restaurants: passengers would probably not go out of their way, to a platform that they weren’t planning on using. This means newsstands could succeed, but not much else; food would have to be shunted to the streets, and presumably restaurants would pay extra to locate right outside the compound. In lieu of concessions, those spaces could host sundry uses, including additional circulation space, information pamphlets, busker performance space, waiting areas for passengers, public art displays, and waiting areas for train crew and cleaners.

Eliminate Penn Station

Note: this is a somewhat trollish proposal, but I do think it should be considered.

New York Penn Station is a mess. Its platforms are infamously narrow, with only enough room for single-direction escalators, leading to overcrowding during peak hours, as passengers scramble to find an up escalator or a staircase. Its two concourses are confusing and cramped, and have claustrophobic low ceilings. Trains’ track assignments are only announced minutes in advance (as at other major US stations), leading to last-minute passenger scrambles to get onto the platforms. Everyone with an opinion, from the city’s architect community to the Regional Plan Association to Amtrak, wants to build an alternative. Let me propose something simpler and cheaper, if uglier: eliminate all above-ground structures, and reduce Penn Station to a hole in the ground.

Most of the preexisting plans for Penn Station do not do anything about the track level. It’s assumed that the tracks will remain narrow, that trains will not run reliably enough for consistent track assignments, and that dwell times will remain high. The architects’ proposals involve a nice station headhouse to make passengers feel important. Amtrak wants to decamp to a nice headhouse at Moynihan Station, again to make its passengers feel important, and add a few extra tracks without fixing the existing ones. The RPA proposal is heavy on redevelopment but says nothing about moving trains in and out more efficiently. Only Penn Design’s proposal says anything about consolidating platforms, in addition to constructing a headhouse, but the need to maintain a pretty headhouse places constraints on the ability to move tracks and platforms.

Eliminating the headhouse moves the focus from making passengers feel important to getting passengers in and out as fast as possible. Most importantly, it means there’s no need for girders and columns all over the track level; they support the buildings above the station, including the headhouse, and would not be needed if the station were a simple open cut. Those girders make it hard to move the tracks and platforms – the only reasonable option if they are kept is to pave over pairs of tracks between platforms to create very wide platforms, which would not be well-aligned with the approach tracks.

In the hole in the ground scenario, the two blocks from 7th to 8th Avenue, from 31st to 33rd Streets, would have no above-ground infrastructure. This requires demolishing Two Penn Plaza and Madison Square Garden. Two Penn Plaza is a building of 140,000 m^2, in a city where the private sector builds office towers of such size for about $750 million (at least when they’re not above active railyards); the city has been making noises about moving Madison Square Garden, although in 2013 it extended its lease by ten years. The tracks and platforms would thus be in the open air, and even from the depth of the platforms, passengers could see the surrounding buildings, just as they can in the open cut west of 9th Avenue, just before trains head into the North River Tunnels.

The two-block compound would be trisected by a pair of wide walkways, as wide as a Manhattan street, parallel to 7th and 8th Avenues. Each of the two walkways would have an access point in each direction toward each platform; with the current narrow platforms this means single-direction escalators, but as tracks would be moved and platforms widened, this would be a pair of wide single-direction escalators flanking a wide staircase. There would be an additional access point heading west out of 7th Avenue and one heading east out of 8th, for a total of six per platform. This is an improvement over the current situation, in which the number of access points ranges from four to six, excluding the LIRR’s West End Concourse, which is west of 8th and thus excluded from this discussion; see diagram here. Penn Station’s tracks are about 14 meters below street level; with 30-degree escalator angles, this means that the escalators would be 24 meters long plus short approaches, say 28 meters total, and this provides adequate separation between access points on the platforms as well as on the two walkways, although unfortunately the spacing on the platform would not be even. For disabled access, elevators would be provided at 7th and 8th Avenues and on both walkways.

The main functions of a train station would be devolved to the surrounding streets and the two walkways. Large clocks, mounted on the high-rise towers next to the station, would show the time. Screens posted over the entire compound would show train departure and arrival times and track assignments. The walkways, and the sides of 7th and 8th Avenues facing the compound, would have ticket-vending machines, selling tickets for all railroads using the station; if the platforms were widened, then there would be room for TVMs and some retail on the platforms themselves. There might even be room for some kiosks on the walkways and food trucks on the streets and avenues. Large ticket offices are not required, and small ones can fit either on the walkways or in a building storefront on the perimeter of the compound.

The technological advances of the last half-century or so have largely made station headhouses obsolete. Train stations used to have telegraph operators; they no longer do. They used to have mail sorting space; mail is now carried by air and road, or electronically. TVMs allow passengers to obtain tickets without buying them at ticket offices, and nowadays e-tickets are making TVMs somewhat obsolete as well. Checked baggage is largely a thing of the past. Transportation companies that aim at low costs, including low-cost airlines and intercity express buses, barely have stations at all: intercity buses pick up at curbs, while low-cost airlines often prefer budget terminals with reduced infrastructure. As far as possible, this is the way forward for train stations as well. Recall that my proposal for a Fulton Street regional rail station followed the same logic, using the street as its mezzanine. This is the way forward for Penn Station, too.

On Penn Station South

There’s an article in the New York Times by its architecture critic Michael Kimmelman, making a forceful case for the Gateway Project’s necessity. Like nearly all transit activists in New York, I think new Hudson tunnels are the top infrastructure priority for regional rail; like nearly all transit activists, I groan at Amtrak’s proposed budget, now up to $16 billion (but unlike most, I think that it should not be built unless costs can be brought down – I’d peg their worth at $5 billion normally, or somewhat more in a crunch). I would like to explain one specific piece of scope in Amtrak’s plan that can be eliminated, and that in fact provides very little transportation value: Penn Station South.

Like all proposals for new Hudson tunnels, Gateway is not just a simple two-track tunnel between New Jersey and Penn Station. No: the feuding users of Penn Station all think it needs more tracks. The rejected ARC proposal had a six-track multilevel cavern, and Gateway has Penn Station South, a proposal to demolish an entire block south of Penn Station and build seven additional platform tracks. The cost of just the real estate acquisition for Penn South: $769 million to $1.3 billion, at today’s prices. Trains using the preexisting tunnels would have to go to the preexisting Penn Station tracks, which I will call Penn Classic; trains using the new tunnels could go to either Penn Classic or Penn South, but the junction is planned to be flat. For illustration, see PDF-p. 12 of a press release of the late Senator Lautenberg, and a clearer unofficial picture on

As a result of this proposed track arrangement, train services would initially suffer from the capacity limitations of flat junctions. Like Penn Station’s tracks 1-4, Penn South would be terminal tracks. This means that the only service possibilities are as follows:

1. Schedule all through-trains, such as Amtrak trains, through the preexisting tunnels.

2. Do not schedule any westbound trains from Penn South or any eastbound trains entering the preexisting Penn Station tracks: for example, no westbound trains from Penn South in the morning peak, and no eastbound trains entering Penn Classic in the afternoon peak.

3. Schedule around at-grade conflicts between opposing traffic.

Option #2 is impossible: Penn South has 7 tracks. If trains can enter but not leave in the morning, there will be room for 7 trains entering in the morning, a far cry from the several dozens expected. Option #1 is the better remaining option, but is ruled out, since Amtrak wants to use the new tunnels for its own trains. This leaves option #3, which restricts capacity, and complicates operations. Thanks to Amtrak’s imperialism, taking over regional rail projects for its own ends, Penn South has negative transportation value relative to just building new tunnels to Penn Classic’s tracks 1-4 (the transportation value relative to doing nothing is of course positive).

I emphasize that the negative transportation value of Penn South comes entirely from Amtrak’s involvement. The same infrastructure, used by passenger rail agencies that were more interested in providing high-quality public transportation than in turf wars, would have positive transportation value. However, as I explained to Kimmelman, this positive transportation value is low, and does not justify even the cost of real estate acquisition, let alone that of digging the station.

Briefly, as can be seen in the diagrams, the interlocking between the two new tunnel tracks and Penn’s eleven terminal tracks – tracks 1-4 of Penn Classic, and all of Penn South – is exceedingly complicated, which would limit approach speed, and not provide much flexibility relative to the number of tracks provided. This is to a large extent unavoidable when two approach tracks become eleven station tracks, but it does lead to diminishing returns from extra tracks. This is one of the reasons it’s easier if trains branch: it’s easier to turn 12 trains per hour on two tracks than to turn 24 on four (although both are done in Tokyo – indeed, the Chuo Line still turns 27 tph on two tracks).

Avoiding large crunches like this at urban terminals a benefit of through-running. This is hard to realize initially unless the new tunnel is what I call ARC-North. It’s still possible to through-run trains, pairing the new tunnels with the southern pair of East River Tunnels and the old tunnels with the northern pair, but it requires a lot of diverging moves at interlockings, limiting speed. Penn Station plans should be built with a long-term goal of simple moves at interlockings, to (slightly) increase speed and capacity and reduce maintenance needs.

However, it’s still possible to square the circle by requiring trains to turn fast on tracks 1-5 of Penn Station (track 5 splits to a terminating end and an end that runs through east of New York). Tokyo would be able to turn a full complement of 24 trains per hour on these tracks. Most other cities would not. However, as somewhat of a limiting European case, the RER A turns a peak train every 10 minutes on single track at Le Vésinet-Le Pecq, the next-to-last station on the Saint-Germain-en-Laye branch; Le Pecq has two through-tracks (also hosting a train every 10 minutes) and one terminal track. See map and schedule. This does not scale to 24 tph on four tracks; somewhat tellingly, those trains do not continue to the terminus, which is a three-track station, implying turning 12 tph on three tracks is problematic. The RER E turns 16 tph at the peak at Haussmann-Saint Lazare, a four-track city terminus, pending under-construction extension of the line to the west, which would make it a through-station.

If we accept 16 tph as the capacity of new Hudson tunnels without new Penn Station tracks, then the question should be what the most cost-effective way to raise future capacity is. An extra 9 tph, the equivalent of the difference between 16 tph and the 25 tph that the current tunnel runs and that Amtrak projects for Gateway, is within the capabilities of signaling improvements and better schedule discipline. Again looking to Paris for limiting cases, the combined RER B+D tunnel between Gare du Nord and Châtelet-Les Halles runs 32 tph, without any stations in the tunnel (the RER B and D use separate platforms), while the moving block signaling-equipped RER A runs 30 tph on its central segment, with stations (as do the S-Bahn systems of Berlin and Munich). The RER E was planned around a capacity of 18 tph, but only 16 tph are run today. 18+32 = 50 = 25+25. France is not Japan, with its famous punctuality: French trains are routinely late, and as far as I remember, the RER B has on-time performance of about 90% based on a 5-minute standard, worse than that of Metro-North in its better months.

More importantly, dropping Penn South from the Gateway plan saves so much money that it could all go to through-running, via a new tunnel from tracks 1-5 to Grand Central. This is about 2 km of tunnel, without any stations; in a normal city this would cost $500 million, the difficulty of building in Midtown canceling out with the lack of stations, and even at New York construction costs, keeping the tab to $2 billion should be doable. The 7 extension is $2.1 billion, but includes a station; an additional proposed infill station at 10th Avenue, dropped from the plan, would’ve $450 million, giving us $1.6 billion for about 1.6 revenue route-km, rising to 2.3 km including tail tracks – less than a billion dollars per kilometer.

At $2 billion, the premium over $1 billion of impossible-to-cut real estate acquisition costs is down to $1 billion. It’s unlikely the construction cost of Penn South could be just $1 billion, without general reductions in city construction costs, which would enable the Penn-Grand Central link to be cheaper as well. Each Second Avenue Subway station is about a billion dollars, and those stations, while somewhat deeper than Penn Station, are both much shorter and narrower than a full city block. The result is that building a Penn-Grand Central link is bound to be cheaper than building Penn South, while also providing equivalent capacity and service to a wider variety of destinations via through-running.

One difficulty is staging the tunnel-boring machines for such a connection: building a launch box involves large fixed costs, especially in such a crowded place as Midtown. One of the reasons Second Avenue Subway and the 7 extension are the world’s most expensive subway project per kilometer is that they’re so short, so those fixed costs are spread across less route length. The best way to mitigate this problem is to build the link simultaneously with the new Hudson tunnels. The staging would be done on Penn’s tracks 1-4, whose platforms would be temporarily stripped; the construction disruption involved in the tunnels is likely to require shutting those tracks down anyway. Depending on the geology, it may even be possible to use the same tunnel-boring machine from New Jersey all the way to Grand Central.

This doesn’t save as much money – the Penn-Grand Central link is extra scope, with its own costs and risks. However, unlike Penn South, it is useful to train riders. Penn South allows terminating trains at Penn Station more comfortably, without having to hit the limit of large-city terminal capacity; the Penn-Grand Central link creates this capacity, but also lets riders from New Jersey go to Grand Central and points north (such as Harlem, but also such more distant commercial centers as Stamford), and riders from Metro-North territory go to Penn Station and points west (such as Downtown Newark).

Normally, I advocate unbundling infrastructure projects, because of the tendency to lump too many things together into a single signature plan, which then turns into political football, a sure recipe for cost overruns. However, when projects logically lead to one another, then bundling is the correct choice. For example, building an entire subway line, with a single tunnel-boring machine and a single launchbox, usually costs less than building it in small stages, as is the case with Second Avenue Subway. New Hudson tunnels naturally lead into a new tunnel east of Penn Station, regardless of where this tunnel goes; and once a tunnel is built, its natural terminus is Grand Central.